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Abstract

The key to Direct Simulation Monte Carlo (DSMC) is decoupling of particle

motion and particle collisions. Particles within each cell are randomly chosen as col-

lision partners, and the collision is then accepted or rejected by comparing collision

criteria to a random number. In the Smoothed Accept/Reject (SAR) algorithm, the

accept/reject criteria is altered: rather than a binary function of rejection or accep-

tance, collisions can be partially accepted with a linear weighting between zero and

one. The partial acceptance is based on a band around the original accept/reject

criteria defined as a percentage of the collision criteria, which is called �. The weight-

ing is used in sampling the particles in order to calculate the macroscopic flowfield

parameters. Previous work included comparisons to experimental data using inverse

shock thickness, the results of which implied a relationship for the appropriate value

of � as a function of Mach number, and this is explored in the present work. Addi-

tionally, 2-dimensional experimental data is used for comparison between SAR and

the original algorithm. Velocity distributions of the particles are examined for all

algorithms and compared to experimental data to determine the effect of the SAR

algorithm at a microscopic level. Both of the 1-dimensional comparisons to experi-

ment shows that SAR provides results that best matches the experimental data. All

of the comparisons to experiment show a Mach dependency that has previously been

noted, and the dependency was defined for the normal shock simulations. DSMC

does adequately simulate the nonequilibrium within the cells at a high Mach number

through the shock, but SAR does. The SAR algorithm models the flowfield in the

shock better than DSMC through a change in the collision rate and particle sampling

methods, which allows for a more accurate simulation.
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Improved Collision Modeling for Direct Simulation

Monte Carlo Methods

I. Introduction

1.1 Motivation

The United States Air Force (USAF) has twelve core functions that are inte-

gral to its role in the defense of our nation. Of these twelve functions, hypersonics

plays a direct role in five: nuclear deterrence operations, air superiority, space supe-

riority, global precision attack, and rapid global mobility. The ability to understand

hypersonic flows and apply the research to the design of hypersonic vehicles increases

access to space and allows a greater range and response time of air and space vehi-

cles throughout the world. Recently, the new report on Technology Horizons by Dr.

Werner Dahm, the Chief Scientist of the Air Force [2], emphasized important future

capabilities that depend on hypersonics research, including prompt strike systems

that would cruise at Mach 6 and a two-stage-to-orbit reusable space launch vehicle,

both of which will fly through a rarefied atmosphere. Therefore, it is imperative for

the Air Force to accurately model and predict the behavior of these vehicles within

the rarefied hypersonic regime.

At higher altitudes, starting around 100 km [3], the air is less dense and there-

fore the Knudsen number (Kn) is higher. The Knudsen number is a measure of the

rarefaction of a gas, and will be explained more thoroughly in the following chap-

ter. Continuum solvers that use Navier-Stokes or Euler equations cannot accurately

predict the gas behavior in high Knudsen number regimes. Figure 1.1 illustrates the

Knudsen number limits for the continuum solvers.

Euler based solvers are used in the inviscid limit (when viscosity is at or very

near zero) while Navier-Stokes based solvers can be used for a simulation with a

Knudsen number of less than 0.1. The continuum assumption breaks down at about

1



Figure 1.1: Knudsen Number Limits on Mathematical Models [4]

Kn=0.1, and the flow can be considered rarefied above that value. Direct Simulation

Monte Carlo (DSMC) is a stochastic method which utilizes the Monte Carlo statistical

model to simulate gas behavior, which is very useful for these rarefied atmosphere

hypersonic simulations, and has been used for this purpose for decades. Notably,

DSMC has been used for simulations of the space shuttle reentry [3, 5]. DSMC has

also compared well to many wind tunnel tests, which have been used to enhance

understanding of hypersonic flows [6, 7]. Additionally, DSMC has been heavily used

in the study of microflows [7]. DSMC will be explained in more detail in Chapter 2.

There are two other methods which are used to predict behavior in a rarefied

condition. The first is molecular dynamics (MD), which is a direct simulation of

each particle, and therefore has generally been limited to nanoscale simulations [8].

MD is more computationally expensive than DSMC, but there has been research to

improve the computational efficiency of MD in the last couple of years so MD can

be used more in dilute gas simulations [8]. MD is a deterministic simulation of the

system whereas DSMC is a statistical model of the system, which requires simulated

particles representing a large number of real particles in order to get accurate results.

The methodology of DSMC makes it more computationally efficient compared to

MD, even though results of DSMC are very similar to MD. The other method is

direct numerical simulation, generally referred as a Boltzmann solver. Boltzmann

solvers are also computationally expensive, but they can be coupled with continuum
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solvers to reduce computational cost in cells that have a low local Knudsen number [9].

Therefore DSMC is a just as accurate, but more cost effective method for hypersonic

method simulations.

There are, however, some problems with the original DSMC algorithm within

areas of nonequilibrium such as shocks and boundary layers. The collision rate is not

high enough to allow for proper equilibration compared to experimental data. A few

collision models, one of which is discussed in more detail in Chapter 2, were created

in order to better simualte the flow in nonequilibrium conditions. These methods

change the collision rate, and also alter the transport properties, which only occur in

nonequilibrium. The simple code that this project uses has one method to correct the

problem, but there are more methods that have been developed over the years. The

scope of this project is not to evaluate the newer collision models, but to investigate

a new accept/reject method that may correct DSMC in another manner.

Over the past 3 years, a modified DSMC algorithm known as Smooth Accep-

t/Reject (SAR) was developed by Greendyke et al [10] that may give more accurate

results. The previous research investigated a potential method that would reduce the

convergence time for DSMC simulations. The research showed that convergence was

not effected by SAR, but the flowfield results were different. The previous work also

showed that DSMC is not always accurate at higher Mach numbers. A one dimen-

sional DSMC shock program predicts a thicker normal shock wave when comparing

to experimental data [10, 11] for velocities above Mach 3. Further discussion of the

previous work can be found in the next chapter.

The purpose of this thesis is to further refine the technique used in the SAR

modification and to better understand why SAR produces the results that have been

seen thus far. The new technique, once understood and applied, can be used for

development of aircraft that operate within the rarefied regime at hypersonic veloc-

ities. The methodology of the project includes comparison of the new algorithm’s

results to experiment and theoretically understanding the effects of the algorithm.
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Additionally, the velocity distribution of specified cells will be compared to the speed

distribution, as derived from the Maxwellian Distribution. Mach dependency will also

be investigated, as a proportional relationship has been noted in previous studies [11].
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II. Background

In order to have an understanding of the project, one must first understand the

derivation and application of the Boltzmann equation. The Boltzmann equation can

be used to calculate gas flow in any condition, incuding in rarefied and nonequilibrium

conditions. Rarefaction will be further discussed in Section 2.2. Nonequilibrium can

be defined as a perturbation from an equilibrium condition, and when the departure

from equilibrium is large, the conservation equations which were derived using a

small perturbation from equilibrium are incomplete. The moments of the Boltzmann

equation, which are found by multiplying the Boltzmann equation by a function

of velocity and integrating over velocity space, must be applied in order to fully

describe the fluid flow in nonequilibrium [12]. The Boltzmann equation must then

be simulated in order to calculate the flowfield, which can be done using DSMC.

DSMC uses statistical modeling to predict the collisional behavior of a gas using a

Monte Carlo scheme and then calculating the expected motion through the use gas

kinetics. DSMC requires knowledge of kinetic theory, therefore the next two sections

will include a description of both the Boltzmann equation and the associated kinetic

theory before DSMC is explained.

2.1 The Boltzmann Equation and Statistical Mechanics

The Boltzmann equation “describes the rate of change, with respect to position

and time, of the distribution function.” [12] The distribution function being discussed

is the velocity distribution function of the particles within the system. In otherwords,

the Boltzmann equation describes the molecular motion of a system, which can be used

to determine the overall behavior of that system. Molecular motion can be described

using velocity space; particles can occupy velocity space just as they occupy physical

space. Just as a particle has a position in physical space that can be described with

coordinates in a reference frame, a particle in velocity space can be described in a

coordinate system. The velocity element that the particles reside in can be defined

as: c1 + dc1, c2 + dc2, c3 + dc3, where c1, c2, and c3 represent the three dimensional
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components of the particle’s velocity. The number of particles within the element can

be found by:

dN = Nf(c)dc1dc2dc3 (2.1)

where N refers to the total number of particles, and f(c) refers to the velocity func-

tion. Just as a spatial volume can be defined by multiplying the three dimensions of

elements that make up the volume, dVx ≡ dx1dx2dx3, the volume in velocity space

is: dVc ≡ dc1dc2dc3 [12]. The Boltzmann equation can be derived by examining

molecules of a particular velocity class, ci, within a volume in physical space and a

volume within velocity space. A velocity class refers to a group of particles occupy-

ing the same velocity element. The Boltzmann Equation accounts for the complete

behavior of the particle within the velocity class: [12]:

�[nf(ci)]

�t
+ cj

�[nf(ci)]

�xj
+
�[Fjnf(ci)]

�cj
=

[
�[nf(ci)]

�t

]
coll

(2.2)

Where �t is the change in time, n is the number density, �xj is the change in position,

�cj is change in velocity, and f(ci) is the velocity function. The first term in Equation

2.2 is the convection term, the second term is the flux of molecules across the surfaces

of the volume, the third term represents flux of molecules into the velocity volume

due to external forces such as gravity, and the right hand side of the equation is

the collision integral, which represents the rate of change in the number of molecules

in the velocity class due to collisions. The convection term simply refers to the

movement of the particles through the system. The flux of molecules accounts for an

open system where particles are moving in and out of the domain. The right hand

side of the equation, known as the collision integral, is what makes the Boltzmann

equation so difficult to solve analytically. The computations are very expensive, and

only very simple geometries with a fairly small domain have been solved using a direct

Boltzmann solver. The collision integral requires knowledge of the velocity states of

the particles before and after collision in order to be calculated [13], which can be

done using kinetic theory and statistical mechanics.
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The collision integral describes the rate of collisions between two particles be-

longing to different velocity classes at a certain point on the sphere of influence as

referenced from the velocity vector and the line of centers. The sphere of influence

refers to the spherical distance at which a particle will begin to effect another parti-

cle. If intermolecular forces are being neglected, the sphere of influence is the radius

of the particle, but the sphere of influence will be larger if intermolecular forces are

being considered. For the purpose of this discussion, sphere of influence could refer

generically to either of these definitions. Line of centers refers to a line that can

be drawn by connecting the center of the two colliding particles. The two colliding

particles belong to different velocity classes, which are called c and �. These particles

will collide and change velocity classes due to the collision, while other particles will

have collisions that cause them to enter into the two velocity classes. These two types

of collisions are referred to as depleting and replenishing collisions, respectively. The

collision term can now be expressed as the integral of the velocity functions over the

volume of the sphere of influence of the � particles:

[
�[nf(ci)]

�t

]
coll

=

∞∫
−∞

2�∫
0

�/2∫
0

n2[f(c′i)f(� ′i)− f(ci)f(�i)]gd
2sin cos d d�dV� (2.3)

where c′i and � ′i replenish the velocities while ci and �i deplete the velocity classes, g

is the relative velocity between the particles, d is the radius of the sphere of influence

of the particle, n is the number density, and � and  represent angles that define

the location of the collision on the sphere of influence. The principle of reciprocity

is an assumption that for every collision that depletes from a velocity class, there is

a collision that replenishes from another velocity class. The principle holds true for

equilibrium cases only. Therefore, in equilibrium the collision integral equals zero,

which means the integral only matters for nonequilibrium conditions, such as shocks

or boundary layers where gradients are large [12].

As stated before, nonequilibrium can be expressed as a perturbation away from

equilibrium, and occurs in two areas of the flowfield: shock layers and boundary layers,

7



both of which happen in hypersonics. In equilibrium, particles in a system can be

distributed into energy states according to the Boltzmann Distribution Function [12]:

N∗j =
NCje

−�j
kT∑

j Cje
−�j
kT

(2.4)

where N is the number of particles, N∗j is the number of j macrostates, Cj is the num-

ber of increments, or degeneracy, k is the Boltzmann constant, T is the temperature,

and �j is the energy. The Boltzmann Distribution Function is the ratio of particles

at a given energy level over the sum of possible energy levels. At any given time, the

particles may not be distributed according to the Boltzmann Distribution, but the

particles spend the majority of the time distributed around it. In nonequilibrium,

particles are not distributed around the Boltzmann Distribution. The energy states

are associated with the macroscopic properties of the system; the macroscopic prop-

erties are known as long as the temperature and the partition function are known.

The partition function (Q) describes how the energy is partitioned across the energy

states, and is defined as [12]:

Q =
∑
j

Cje
−�j
kT (2.5)

A particle can store energy in different ways: as translational energy, rotational energy,

vibrational energy, or electronic energy. Each type of energy storage will have its own

distributon function associated with it. When particles go through a shock wave,

the particles’ higher energy modes are activated, and through collisions the particles

return to a new equilibrium state. The rate at which particles return to equilibrium

is called the relaxation rate [12], and each type of energy storage will have its own

relaxation rate dependent on types of collisions required for reequilibration. Kinetic

theory is therefore important to discuss in order to fully understand the behavior of

the gases through molecular collisions.

There are a few assumptions that go into the derivation of the Boltzmann equa-

tion that must be discussed before moving on. The density is considered low enough
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that only binary collisions occur and intermolecular forces are negligible [13]. In other

words, there are so few particles in the volume that the likelihood of three molecules

being at the same place at the same time in order to cause a tertiary collision is highly

unlikely. Additionally, since there are so few particles, a particle’s path will not be

altered simply by being affected by another molecule’s presence unless a collision

takes place. Another assumption is that of molecular chaos, which means that the

velocities of two colliding particles are not correlated and are independent of position.

Boltzmann referred to the molecular chaos assumption as “stosszahlansatz.” These

assumptions are common with DSMC methodology.

2.2 Kinetic Theory

Rarefied conditions have been mentioned in the previous sections, but not yet

defined. The degree of rarefaction of a gas is expressed in terms of the Knudsen

number [4]:

Kn =
�

L
(2.6)

where � is the mean free path is the distance between molecular collisions, and L is a

characteristic length associated with the system. The more rarefied the gas is, the less

likely it is that particles will collide. The mean free path will be larger, which means

that particles will travel a longer distance before colliding, which is the mechanism

particles use to equilibrate. Therefore, particles will not be in equilibrium with the

other particles in the flowfield for longer. As a particle moves through space, it sweeps

out a volume per unit time which is �d2C [12]. The number of collisions per unit

time (�) is given by:

� = �d2Cn (2.7)

where d is the diameter of the particle, C is the average molecular velocity. Using the

above equation, the mean free path is:

� =
C

Θ
=

1

�d2n
(2.8)
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Additionally, the number of collisions per volume (Nc) is [4]:

Nc =
1

2
n2�T cr (2.9)

Where �T is the collision cross-section and cr is the relative velocity between

particles. The characteristic length used to find a local Knudsen number can be

defined as [4]:

L =
�

d�/dx
(2.10)

A high Knudsen number indicates that the mean free path is near the same

magnitude as the characteristic length, which is a condition that occurs at high alti-

tudes when the density is low or if an incredibly small characteristic length is used,

such as in nanoscale simulations.

Velocity functions were discussed in the preceeding description of the Boltzmann

Equation, but have not yet been defined. The equilibrium velocity distribution is

called the Maxwellian distribution:

f(Ci) =

(
m

2�kT

) 3
2

e−
m

2kT
(C2

1+C
2
2+C

2
3 ) (2.11)

where m is the mass of the particle, k is the Boltzmann constant, T is the tempera-

ture, and C is the particle thermal velocity broken into its 3 components [12]. The

magnitude of the velocity can be investigated using the speed distribution, which is

derived from the Maxwellian distribution [12]:

�(C) = 4�

(
m

2�kT

) 3
2

C2e−
m

2kT
C2

(2.12)

The speed distribution (�(C)) is written for a gas with no bulk motion, which is not

true for the computational cases in this thesis. A method to adapt the speed equation

for use in hypersonic and supersonic flows has been developed, and will be discussed

in Chapter 3. The most probable thermal velocity is derived from the speed equation
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and is defined as:

Cmp =

√
2kT

m
(2.13)

The most probable thermal velocity (Cmp) is the velocity that the particles are most

likely to have given the temperature of the system. The Cmp should not be confused

with the average velocity, as they are not the same.

2.3 Direct Simulation

Now that the theoretical background that forms a basis for DSMC has been

investigated, DSMC itself can be discussed. DSMC is a stochastic model that simu-

lates a flowfeld using the Monte Carlo statistical method, and is primarily used for

rarefied gas simulations and nanoscale simulations. The Monte Carlo method is used

to determine if a collision occurs. Once the collision is accepted, kinetic theory is

used to calculate the collision behavior of the particles. There are a few molecular

models used to describe particle collisions that have been implemented in DSMC.

The most basic is the hard sphere (HS) model, which is known as the “billiard ball”

model. In the HS model, intermolecular forces are neglected, and it is assumed that

molecules only interact with each other by physically colliding. In other models, such

as the Sutherland model, that take intermolecular forces into account, molecules can

interact simply by being within a certain radius of each other. The Sutherland model

adds weak atractive forces before the molecules contact [12]. Neither Sutherlands nor

HS demonstrate reality. Molecules actually display an attractive force until they get

within a certain distance of each other, at which point the force becomes repulsive.

The repulsive force increases as the distance between the particles decreases, and force

will eventually become infinitely strong [12]. An improvement on the HS model is the

variable hard sphere (VHS) model, which is used primarily thoughout this project.

The VHS model varies the diameter, and therefore the collision cross-section of the

particles based on the velocity of the particle, and will be further discussed in another

section.
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The process of DSMC is fairly simple, and is based on an assumption that the

motion and collision of particles are decoupled. The assumption allows the algorithm

to collide particles and then separately move the particles, which will be explained in

further detail when DSMC assumptions are discussed. The DSMC algorithm uses a

small time scale, usually on the order of the mean free time, which is the time between

molecular collisions. This small time scale, usually on the order of 10−6 seconds, and

a small cell size allow the algorithm to decouple the particle motion and particle

collision processes. The DSMC program progresses through a basic set processes for

a specified number of time steps. The process begins by moving particles on the

velocity vector of each particle. The number of collisions (P) are then calculated

using the probability equation:

P =
FN�T crΔt

Vc
(2.14)

where FN is the ratio of actual particles per simulated particle, �T is the collision

cross-section, cr is the relative velocity, Δt is the change in time, and Vc is the volume

of the computational space, which for the purposes of this equation is the cell volume.

Next, a randomly selected pair of particles from a cell are chosen and the following

ratio is calculated and compared to a randomly selected number:

�T cr
(�T cr)max

> Ran (2.15)

If the randomly selected number is larger than the ratio, the particles do not

collide. If the randomly selected number is smaller than the ratio, the particles

do collide. The pair selection and comparison repeats for the calculated number of

collisions in the cell for all cells in the domain. All the particles are then moved based

on their new velocity vectors (if collided) or the same velocity vector (if not collided)

and the process is repeated until the flowfield reaches a steady state.
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A few notes to make about the above process before moving on: the cell size

must be on the order of the mean free path or smaller in order to properly decouple

the movement and collision process, which can be verified by making sure that each

particle only collides once per step. If a cell size is on the order of the mean free

path and the time step is on the order of the mean free time, then a particle should

only collide once per time step. If the particles do collide more than once per step,

the assumption of decoupling is no longer valid, and either the cell size or time step

will need to be reduced. In particular, one should look at particles in the stagnation

region and shock layer (if one exists for the particular flowfield) since that will be the

most dense area of the flowfield and is the limiting factor when designing a simulation.

The ratio of simulated particles to real particles can also be increased to avoid more

than one collision per particle per time step. Additionally, because of the nature of

this statistical simulation, if there are not enough simulated particles in a cell the

variance can be quite large. If a flowfield is too rarified, the time steps or cell size can

be increased, or the ratio of simulated particles to real particles can be decreased.

Bird made a few key assumptions when he developed DSMC [4]. The first is

local equilibrium in each cell. A flow through a shock is not in equilibrium, and it

takes a number of collisions after the shock to requilibrate. Additionally, flows within

a boundary layer are not in equilibrium. When there is a gradient present in the

flowfield, there will be areas of nonequilibrium. A shock layer is an area between two

different equilibrium states, and there will be a gradient present between the states.

Boundary layers exist because the velocity at a wall is zero, so a gradient between the

wall and the freestream develops. The flows in this research contain both shock layers

and boundary layers and therefore are at nonequilibrium. Bird makes the assumption

that if a cell size is roughly the mean free path or smaller, the particles within each cell

are in local thermodynamic equilibrium. Bird uses the following equation to calculate

the mean free path using the collision frequency [4]:

� =
c′

�
=

[
n

(
�T cr

c′

)]−1
(2.16)
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Where c′ is the mean thermal speed of the particle, � is the collision frequency, and n

is the number density. Essentially, there are so few particles in a small enough space

that they can collide with each other and stay in equilibrium even if the flowfield

itself is not in equilibrium. These cells create a piecewise equilibrium where the

particles within the cell are in equilibrium, but the particles are not in equilibrium

with the particles in neighboring cells. Therefore, on a macroscale the flowfield is not

in equilibrium even though on a microscale the particles are in equilibrium with the

particles in their immediate vicinity. Another assumption made by Bird is within a

cell particle collisions are not a function of location. In other words, if a cell is small

enough, one does not need to know where the particle is within the cell in order to

decide if it can collide with another particle within the cell. Since the collisions within

the cells are not a function of location, Boltzmann’s assumption of molecular chaos

is satisfied. The assumption of molecular chaos simply means colliding particles are

independent of position. Additionally, the two random selections during the collision

process satisfy the molecular chaos assumption that is required with the Boltzmann

equation [4]. Another significant assumption of DSMC is that every simulated particle

represents many real particles, usually around 1013, which not only allows DSMC to

be computationally tractable but also provides the sampling pool of particles required

for the statistical model. Given a small enough cell size, the first two assumptions

are reasonable. In conditions such as a high Mach number flow over a body, the

assumption that so many particles have the exact same characteristics may not be

an accurate assumption [14]. This last assumption will be explored further as the

results of the project are discussed in Chapter 4.

2.4 Variable Hard Sphere

As discussed previously, intermolecular forces are neglected in the HS model,

and the model is not realistic. The inverse power law accounts for the change in

intermolecular forces as a function of distance between particles, but it is also com-

putationally expensive [15,16]. The VHS model is a combination of the inverse power
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law and HS models. The VHS model uses an inverse function to relate the tempera-

ture and the average cross-section of the particle. Therefore, just as the name implies,

a hard sphere is still modeled, but the sphere changes cross-section according to the

relationship [15]:

� ∝ T−� (2.17)

where T is temperature and � is an exponent that is unique to the particular gas

being examined and is related to the viscosity index by:

! = 1/2 + � (2.18)

where ! is the viscosity index. The viscosity index for the gases used in this project

can be found in Bird [4]. Equation 2.17 shows that as temperature increases, the

collision cross-section will increase on average. Bird uses a reference diameter at a

corresponding reference temperature to calculate the diameter of the particle:

d = dref

(
(
2kTref
mrc2r

)!−
1
2

Γ(5
2
− !)

) 1
2

(2.19)

where dref has been defined in multiple references [4,16], and mr is the reduced mass,

which is defined as:

mr =
mAmB

mA +mB

(2.20)

where mA and mB are masses of two colliding particles. The gamma function from

Equation 2.19 is defined as:

Γ(j) =

∞∫
0

xj−1e−xdx (2.21)

As one can see in Equation 2.19, the diameter is dependent on the relative velocity,

and the other values should remain fixed for a given particle. As a particle’s velocity

increases, the diameter (and therefore collision cross-section) also increase. The SAR

procedure, which will be fully defined in the next chapter, also has a velocity depen-
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dency. Bird has proven that the VHS model applied in a DSMC simulation compares

well to experiment with a normal shock wave with M=2, but at higher Mach numbers

DSMC does not compare as well to experimental data [11]. Therefore a question that

must be asked is whether SAR could be used rather than or in addition to VHS to

give accurate results for higher Mach flows.

2.5 Experimental Data

Two experiments are used for comparison in this project. The first is a 1-

dimensional normal shock, and the second is the 2-dimensional axisymmetric hollow

cylinder with a step. These experiments are detailed in this section, and in the

following chapter the simulations used for comparison will be described.

2.5.1 1-Dimensional Normal Shock. Alsmeyer performed experiments mea-

suring the density distribution of Argon and Nitrogen across a normal shock wave

for Mach numbers between 1.55 and 9 [1]. A stainless-steel shock tube was used

for the experiment with an inner diameter of 150 mm. The density measurements

were taken by measuring the attenuation of an electron beam which was generated

by a commercial electron gun and collected by a Faraday cage. Once the data was

collected, Alsmeyer plotted the normalized density profile across the shock and the

inverse shock thickness. The density was normalized by [1]:

�n =
�− �1
�2 − �1

(2.22)

where � is the measured density at a point, �1 is the density before the shock, and �2

is the density after the shock. The normalization allows for comparison to Alsmeyer’s

data regardless of the initial density, which means that many different sets of exper-

imental data can be evaluated with each other. The error of the normalized density

is accurate within ±1%, and the inverse shock thickness is believed to be accurate to

±4%.
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Figure 2.1: Inverse Shock Thickness with Argon [1]

Figure 2.1 shows a range of inverse shock thicknesses at each Mach number,

which were created by nine different researchers. Alsmeyer compiled the experimental

data and used it as a reference in Ref [1]. The black line is the curve fit of Alsmeyer’s

data, and the blue curve fit is a 6th order curve fit of all the experimental data on

the figure. The computational results will be comapred to the blue curve fit of all the

data. The data shows that shock thickness initially thins quickly as Mach number

increases until just past Mach 3, at which point the shock thickens at a much slower

rate.

2.5.2 2-Dimensional Axisymmetric Hollow Cylinder. Davis’ experiment

that is serving as a comparison is a 2d axisymmetric hollow cylinder with a step
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[17]. The experiments used a heated nitrogen wind tunnel at the Imperial College

in London in the 1970s [18]. The flow travels axially at approximately Mach=21

with a static temperature of 23K. Below is a schematic of the cylinder used in the

experiment:

Figure 2.2: Hollow Cylinder with a Step [17]

The air flows axially along the hollow cylinder and impacts the 6 mm tall step

50 mm from the leading edge of the cylinder. The initial radius of the cylinder is 444

mm, which becomes 456 mm after the step. The leading edge of the hollow cylinder

is approximately 0.02 mm thick and has a 10∘ bevel in order to split the flow around

the 1 mm thick cylinder [17]. The cylinder is constructed of a copper, cobalt, and

zirconium alloy that has a high thermal conductivity in order to maintain the uniform

wall temperature of 318K. The wall was not water cooled for the asymmetric testing

as it was for other studies, but the wall temperature was measured [17]. The tem-

perature measurement served as the wall temperature input for the computational

study performed for this thesis. The density values were measured with an electron

beam probe [17]. The nitrogen gas fluoresces when an electron probe fires electrons

through the gas, and the intensity of the fluoresence is directly proportional to the

density. The flouresence is photographed, and a microdensitometer, which measures

the amount of blackness in a photograph, is used to quantitatively measure the fluo-

resence. Density profiles were created at five points along the cylinder: 18 mm before
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the step, 3 mm before the step, at the step, 1 mm after the step, and 7 mm after the

step. Davis’ density profiles can be found in Figures 2.3 through 2.7.

Figure 2.3: Davis Density Profile at x=0.0313m [17]

In Figure 2.3, the profile data is taken .0187m upstream of the step. The change

in density is due to a weak shock layer merging with the boundary layer.

Figure 2.4: Davis Density Profile at x=0.0462m [17]

The density profile in Figure 2.4 is taken 0.0038m upstream of the step. The

increased density towards the wall is due to the stagnation layer. The density peak
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is at approximately 0.032 m rather than 0.029 m in Figure 2.3, indicating a growing

boundary layer as distance from the leading edge increases.

Figure 2.5: Davis Density Profile at x=0.0495m [17]

Figure 2.5 shows the profile closest to the stagnation point and therefore it has

the highest density value at the wall. A smaller peak at approximately y= 0.033 m

shows the location of the shock layer at x=0.0495 m.

Figure 2.6: Davis Density Profile at x=0.0509m [17]
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Past the stagnation point, the density profile is similar to the first profile at

x=0.0313 m. The change in density is larger, as the shock is stronger after the step.

However, both of the profiles at x=0.0509 m and 0.0561 m show an increase in density

close to the wall, at approximately y=0.0305 m.

Figure 2.7: Davis Density Profile at x=0.0561m [17]

The shock is stronger 6 mm downstream from the step compared to Figure 2.6,

as shown by the change in density at x=0.0561 m in Figure 2.7.

2.6 Velocity Distributions

The velocity distributions across a shock wave at Mach 7.18 were derived from

experimental data by Holtz and Muntz [19]. An electron beam flourescence technique

was used, just as with the other experiments discussed in this project. In order to

adequately resolve the regions in the flowfield, a Fabry-Perot etalon was implemented

in the observations [19]. The Fabry-Perot etalon acts as a filter and only allows certain

emission frequencies to be evaluated. The relative velocity between the sensor and

the molecules are calculated using the equation [19]:

Δ�

�0
=
V

c
(2.23)
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Where Δ� is the wavelength shift due to molecular motion, �0 is the unshifted wave-

length of fluorescence, V is the relative velocity, and c is the velocity of light [19]. The

sampling locations are identified by a normalized density value so that the data may

be compared to other experiments and computational results [19]:

n̂ =
n− n1

n2 − n1

(2.24)

where n̂ is the normalized number density, n is the number density at the location,

n1 is the upstream number density, and n2 is the downstream number density. These

techniques are accurate within ±4% [19]. Holtz and Muntz take data at multiple

points throughout the shock, but three points were chosen to use as a comparison

for this project: n̂ = .24, n̂ = .333, and n̂ = .542. These points were chosen based

on the changes occuring as the large number of particles traveling at the upstream

velocity collide with other particles in the shock. After n̂ = .542, the distributions

take on a fairly symmetric appearance and do not change significantly. The velocity

distributions are normalized for ease of comparison. The velocity is divided by the

upstream bulk velocity, and the y axis is normalized by the maximum velocity function

so that the distributions all peak at unity. The distributions chosen for comparison in

this project have been reproduced so that they can be plotted with the computational

results.
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Figure 2.8: Velocity Distribution at n̂ = .24 [19]

The distribution in Figure 2.8 shows that most of the particles are still at the

bulk velocity, which is located at V/V∞. These particles that are traveling at the bulk

velocity have not collided with another particle in the shock layer, yet.

Figure 2.9: Velocity Distribution at n̂ = .333 [19]

In Figure 2.9, the distribution is much wider and there is no longer a peak at

the bulk velocity. The majority of particles have collided within the shock later and

are traveling slower than the bulk velocity. The distribution is still slightly skewed
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to the right and not symmetrical, indicating that there are still a number of particles

that have not collided and are still traveling at the bulk velocity.

Figure 2.10: Velocity Distribution at n̂ = .542 [19]

At the last sampling point within the shock, the distribution is very smooth and

symmetrical, indicating that at a little over halfway through the shock layer the vast

majority of particles have experienced a collision. The distributions before and after

the shock, which are equilibrium distributions, should also be used for comparison.

Figure 2.11: Velocity Distribution Upstream of the Shock [19]
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Upstream of the shock, the majority of the particles are at the bulk velocity,

and the distribution is relatively thin. Since the majority of the particles are traveling

straight from left to right at the bulk velocity, there are fewer collisions, which causes

the tight concentration around the bulk velocity.

Figure 2.12: Velocity Distribution Downstream of the Shock [19]

After the shock, the vast majority of the particles have collided and they have

reached a new equilibrium state. The new bulk velocity is about half of the upstream

bulk velocity. The distribution is wider, reflecting the fact that there is a large range

of particle velocities after the shock due to collisions.
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III. Methodology

As stated in the introduction, the purpose of this project is to explore the applicability

and usefulness of the SAR method. SAR will be fully defined in this chapter, and the

computational experiments will be outlined. Additionally, another variation of the

collision accept/reject criteria will be evaluated called No Accept/Reject(NoAR). As

the name implies, there is no accept/reject criteria in NoAR: if a pair of particles is

chosen to collide, then they are automatically accepted. A more detailed explanation

of NoAR will be found in the next section.

The first experiment that must be done on these two new algorithms is the

random walk test. Bird discusses in his book [4] that DSMC is a Markovian system,

which means that the next time step is only dependent on the current time step.

A random walk is a subset of the Markov chain, and will not conserve molecular

quantities such as position, velocity, and internal energies. Random walks can occur

in DSMC because the molecular quantities are conserved on the average and because

of rounding that is inherent with any computer program [4]. Once SAR and NoAR

have been proven to contain no more random walks than the original DSMC code,

the rest of the experiments can begin.

The second experiment is the comparison to the 1-dimensional normal shock

experiment by Alsmeyer [1] using Bird’s 1-dimensional code, called DSMC1S [4].

Alsmeyer measured density and used the measurements to calculate the inverse shock

thickness of the shockwave. The inverse shock thickness will be calculated at several

Mach numbers ranging from 1.5 to 9, which will not only allow for comparison to ex-

perimental data, but also provide insight into the relationship between Mach number

and �.

The third is the comparison to the hypersonic flow over 2-dimensional axisym-

metric cylinder with a step experiment that was performed by Davis [17]. Davis

created density plots which can be compared to computational results using Bird’s

DSMC 2-dimensional axisymmetric (DSMC2A) code [4].
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The fourth comparison uses velocity distributions created using data from both

the DSMC2A and DSMC1S codes that can be compared to the velocity distributions

from Holtz and Muntz. Additionally, velocity distributions at four different Mach

numbers are compared to each other to understand the effects of Mach number on

the velocity distributions.

Lastly HS simulations with SAR and NoAR are compare to the VHS simulations

and the experimental data for the hollow cylinder and the normal shock. Since both

SAR and VHS have Mach dependencies, it was decided for completeness to run HS

couple with SAR.

3.1 SAR Method

The Smoothed Accept/Reject collision algorithm varies only slightly from that

of the original DSMC algorithm by Bird [4, 10, 11]. The collision accept criteria

becomes:
�T cr

(�T cr)max
± �

2

�T cr
(�T cr)max

> Ran (3.1)

where � is a user determined percentage of the ratio of collision cross-section times

relative velocity over the maximum product within the cell. Just as with Bird’s

code, if the random number is larger than the left side of Equation 3.1, the collision

is rejected, and if the random number is smaller the collision is accepted. Unlike

Bird’s code, however, random numbers that are within the band of the ratio plus or

minus �
2

are partially accepted and given a weighting between 0 and 1 that varies

linearly. Additionally, particles that are fully accepted are given a weighting of 1

and rejected particles are given a weighting of zero [11]. These weightings are used

to calculate the macroscopic flowfield properties. Only particles with a non-zero

weighting are considered when sampling the flowfield, which was hoped to make the

DSMC simulations converge faster [11], using the equation:

Q =
ΣiwiQi

Σiwi
(3.2)
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where Qi is a flowfield parameter and wi is the weighting. Note that density does

not use the weighting scheme in order to conserve mass. The simulations did not

converge faster, but variations in the flowfield were noted for further study [10]. The

cases for this project include � values of 0%, 25%, 50%, 75%, 100%, and 200%. The

� = 0% case has the same accept/reject criteria as the original code and will only

have weightings of zero and one because there will be no partially accepted collisions.

The resulting flowfield therefore should be closest to the flowfield produced by Bird’s

code, but not necessarily identical because of the sampling differences associated

with SAR compared to the original DSMC algorithm. As the � value increases, the

number of rejected and fully accepted particles will decrease while the number of

partially accepted particles will increase [14]. In the NoAR code, if a pair of particles

is selected to collide they are accepted and given a weighting of 1 [10]. Just as with

SAR, only particles with a non-zero weighting are sampled in the NoAR algorithm,

and particles that are not selected to collide have a weighting of zero. The NoAR

algorithm was developed because it is the complete opposite of an orderly Markovian

system with an accept/reject criteria. NoAR is an extreme case that higher � values

should tend toward. The 200% SAR case was selectively run to verify that the results

do continue to tend toward NoAR. The expected results of the study are that Bird

and NoAR produced flowfield results that are the extrema and the SAR results are

in between, with lower � values closer to Bird.

An illustration of the smoothed accept/reject concept is seen below:

The blue line in Figure 3.1 represents the �
2

limit and the green line is − �
2
. The pink

line is the original Accept/Reject criteria. Values in Equation 3.1 that compare less

than the random number, value are fully accepted and would appear under the green

curve and have a weighting of 1. The rejected particles that are above the random

number would appear above the blue line and have a weighting of 0. The partially

accepted particles would be between the green and blue lines and have a weighting

between 0 and 1.
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Figure 3.1: SAR Illustration

During the previous work, a one-dimensional shock simulation was compared to

experimental data using the original algorithm, SAR, and NoAR [10,11]. The results

of the one-dimensional shock thickness experiment with Argon are shown in Figure

3.2 on the next page.
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In the Figure 3.2, inverse shock thickness is shown as a function of Mach number.

The black line is a curve fit of Alsmeyer’s experimental data, and the blue line is the

curve fit for all experimental data displayed on the graph. The figure also shows

inverse shock thicknesses as calculated from the results of the original DSMC code,

NoAR, and � values of 10%, 25%, 50%, 75%, and 90%. The calculation for inverse

shock thickness is explained in Section 3.3. The NoAR case results in a thinner shock

for all cases, and the SAR results are in between Bird’s and NoAR’s results. As one

can see, the results from Bird’s original code becomes inaccurate above M=3, when

Bird’s code begins to predict a thicker shock compared to experimental results, but

the SAR algorithm is able to match the experimental data. As the Mach number

increases, a higher � value is required to agree with experimental data, which is a

result that requires more study as described in Section 3.3.

3.2 Random Walk Testing

In DSMC, the macroscopic values are stored as an average value of all the par-

ticles in the cell [4]. Using average values can lead to random walks in the Markovian

system. A Markovian system is one in which the event at the next step is stochasti-

cally generated based on the event at the current time step without information from

any previous steps [20]. Random walks can be tested, as Bird did, by simulating a

closed system where particles are allowed to collide with each other and the walls as

described in 10.4 of Ref [4]. The kinetic energy of the system is monitored for consis-

tency over a number of time steps. If there is a significant change in kinetic energy,

random walks are occuring and conservation of energy is not maintained. If kinetic

energy remains nearly the same (one needs to account for changes due to round-off

errors associated with repeating a process many times), random walks are not occur-

ring in the program. The particular test for this project used 400,000 particles that

were allowed to collide for 1,000 sample steps. The kinetic energy and the variance of

the kinetic energy are used for comparison between the algorithms and to verify that

the random walks are at a minimum.
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3.3 1-Dimensional Shock Thickness

In addition to the new work as described later in this chapter, the 1d shock

thickness comparison was reaccomplished, partially to verify that the same trends are

seen and partially to see what additional information can be garnered from the com-

parison. The same 1d shock algorithms used for the speed distribution comparisons

are used for the shock thickness plots. The programs are used with Mach numbers

1.5, 2, 3, 6, and 9. The resulting shock thickness for each Mach number is then

graphically compared to Alsmeyer’s data [1].

The inputs into DSMC1S for the project are an initial temperature of 293K,

a number density of 1019, and the ratio of simulated particles to real particles is

0.4 ∗ 1016. The time step is set at 0.75 ∗ 10−6 seconds and the cell size is 2 mm

with a computational domain length of 0.6 m. The project compares to Alsmeyer’s

argon experiment, and the properties of argon where found in Bird [4]. DSMC uses

a velocity input with units of meters per second while Alsmeyer’s data is in terms of

Mach number. The input velocities were calculated using the following equation:

M =
V√
RT

(3.3)

The velocities and associated Mach numbers are tabulated below for ease of repeati-

bility:

Table 3.1: Velocity Inputs Calculated From Mach Number

Mach V (m/s)
1.5 478.25
2 637.67
3 956.51
6 1913.02
9 2869.18

According to Vincenti and Kruger, shock thickness can be related to the pre-

shock supersonic velocity and the post-shock subsonic velocity over the velocity gra-
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dient [12]:

xu ≡
u� − u�
∣du
dx
∣max

(3.4)

Where u� is the before shock velocity, u� is the after shock velocity, and the denom-

inator is the maximum velocity gradient in the shock. Bird uses a similar equation,

but instead of calculating shock thickness in terms of velocity, he uses density [4].

Bird’s equation is used to find shock thickness in this project.

The information needed for Bird’s equation comes from the data out file that

is produced by the DSMC algorithm, which is then processed by a MATLABTMcode

written by Bentley and adapted by the author to calculate the shock thickness [11].

3.4 Comparison to 2-Dimensional Axisymmetric Cylinder Experimen-

tal Data

The third step in the research project is to compare the results of Bird’s original

code to experimental data that Bird also used for comparison [4, 14] by Davis. Sim-

ulations for this portion of the project were conducted using Bird’s original code [4],

a NoAR case, and a range of � values which are 0%, 25%, 50%, 75%, 100%, and

200%. Bird’s 2d axisymmetric code, and all the DSMC codes used in this project,

can only create surfaces along a cell boundary and cells can only be rectangular [4].

Therefore the leading edge will not have a bevel in the simulations which may have a

minor impact on the simulation - that impact will be taken into consideration when

reviewing the results. The dimensions of the computational space are 0.15 m in the

x-directon and 0.085m in the y-direction in order to match the experiment and sub-

sequent simulations performed by Davis [17]. The computational domain in relation

to the experimental set-up for the hollow cylinder is shown below in Figure ??

The hollow cylinder is 1 mm from the bottom of the computational domain, and

the leading edge begins at the left side of the domain. The cell size for the simulations

is 1 mm in the x and y directions. A grid with cell dimensions of 0.5 mm, which is

on the order of the mean free path, was also used in the study to see if the solution
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Figure 3.3: Computational Domain

is improved. The hollow radius of the cylinder is not part of the computational space

in the simulation, but the radius is not neglected. Bird’s 2-dimensional axisymmetric

code accounts for an internal radius that is not in the computational space [4].

In addition to comparing the results to experimental data, the results have

been compared to each other. Contour plots generally provide a qualitative method

of comparing results. In order to improve upon the comparison, the contour plots have

been generated by subtracting the result of each of the SAR and NoAR algorithms

from Bird’s results, and dividing by Bird’s result and multiplying by 100 in order

to plot the percentage of difference between the results. For example, the density

percent difference between Bird and the results of SAR with � = 0% is found by:

�%diff =
�Bird − �Eps00

�Bird
100 (3.5)

There are some cases where the value of density will be zero, in particular where

the step is. In Bird’s code, the wall boundaries are defined in the data subroutine,

but these areas with no flow are a part of the computational domain, and data is

written out for these locations. Therefore, the areas of no flow need to be taken into

account. For these cases, the density is assumed to be 10−6, which gives a large value

for the percent difference. The difference calculations were performed for density,
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u-velocity, and temperature. These contour plots also give an idea of which cell the

velocity data should be exported from for the speed distributions in order to see the

largest difference between results. It would make sense that the cells with only small

differences in the u-velocity would have similar velocity distributions while cells with

larger differences will have disimilar velocity distributions. Choosing of the sample

cells is further discussed in Section 3.5.

3.5 Velocity Distribution Comparisons

The velocity distributions as described in Section 2.6 will provide further insight

into the behavior of the particles as they travel through the shock layer. Before the

shock, the majority of the particles are traveling at the bulk velocity, which creates

a thin profile. Within the shock, the particles transition from traveling at the bulk

velocity to traveling at a lower speed via molecular collisions. The distributions in

Section 2.6 show the behavior of the particles as they collide and eventually reequili-

brate to a new flow velocity. Velocity distributions resulting from the DSMC, SAR,

and NoAR simulations will be compared to Holtz and Muntz’s data at Mach 7.18,

and velocity distributions will also be created for Mach 1.5, 3, 6, and 9 in order to

observe the change in the distributions with Mach number. As the Mach number in-

creases, the shock becomes stronger and the perturbation from the equilibrium state

becomes larger. The velocity distributions should reflect the change in the amount of

nonequilibrium, and DSMC, SAR, and NoAR may handle the changes differently.

The distributions will all be normalized just as Holtz and Muntz normalized

their distributions [19]. Using the normalized distributions gives a height of 1 for

all the distributions and compares the particle velocities to the bulk velocity of the

flowfield, which allows for direct comparisons regardless of the input bulk velocity

used in the DSMC, SAR, or NoAR codes. The histogram program for the unweighted

velocities uses the histogram function in MATLABTMto calculate the distributions,

which are then normalized. The weighted velocities required a different approach.

With the unweighted velocity histogram, if a particle’s velocity falls within a certain

35



bin, then one is added to the number of particles within that bin. The weighted

particles however do not all have a weighting of one. Therefore, if a weighted particle’s

velocity falls within a bin, the weighting is added to the number of particles in the

bin.

Speed distribution studies were initially accomplished with DSMC1S, and the

modifications to the program with SAR and NoAR. The particle velocity components

and weights at locations within the flowfield were exported into a file. The compu-

tational domain has 300 cells, with the shock occuring at the middle. The shock is

at x=0 m, the left boundary is at x=-0.3 m, and the right boundary is at x=0.3 m.

Mach 1.5, 3, 6, and 9 simulations have three sampling locations: before the shock, in

the shock, and after the shock. The preshock sampling location is 10 cells into the

domain from the left side of the domain, at x=-0.28 m. The location within the shock

was chosen at cell 150 at x=0m, and the post shock location is cell 290 at x=0.28 m.

The Mach 7.183 distributions were taken at sample locations based on the location of

the normalized density. The DSMC, SAR, and NoAR simulations were all run 10,000

time steps, and the normalized density was calculated for each case. The simulations

were then run again and the particle velocities were written at the locations of the

normalized densities previously mentioned in Section 2.6.

The DSMC2A code is also used to investigate the velocity distributions. The

flowfield is very complicated, and the velocity distributions are difficult to predict.

The same flowfield complications make it difficult to choose which cells should be

sampled for the distributions. Four locations were initially chosen as sample cells

for the velocity distributions, which are 495, 795, 1255, and 1295 as seen in Figures

3.4 and 3.5. Cell 1295 was in the boundary layer for some of the simulations, which

affected the comparison of velocity distributions, so 1255 and 1295 were replaced

with 1705 and 1755. Cells 350 and 3669 were chosen by using the percent difference

contour plots to determine the areas of the flow with the largest differences. Not

entirely surprisingly, the biggest differences were found at the stagnation point (350)

and in the shock layer (3669). The points are identified by the cell number that they
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are assigned in DSMC. DSMC assigns each cell a number starting with one in the

bottom left hand corner, and goes left to right and then up to the next row of cells.

The figure below shows the location of the points in reference to the flowfield:

Figure 3.4: Sampled Points on Velocity Contour Plot

The location of the shock is more easily visible in Figure 3.5, which is a contour

plot of density rather than velocity.

Figure 3.5: Sampled Points on Density Contour

37



Figures 3.4 and 3.5 show that the recirculation region is represented by cells 495

and 795. Cell 350 is in the stagnation region, and 1255 and 1705 are just after the

step. Cells 1295 and 1755 will show the behavior well past the step, and cell 3669 will

allow the investigation of the shock layer velocity distributions. These points were

sampled using Bird’s code, NoAR, and SAR with � values of 00%, 25%, 50%, 75%,

and 100%. The distributions are compared visually and with the statistical equations

discussed earlier in the section.

After creating all the plots and visually comparing them, it was determined that

the histograms are only minutely different. A more precise way to compare them must

be developed. Evaluating the characteristics of the distributions, such as maximum

value, the average velocity, Cmp, and moments of the histogram, specifically kurtosis

and skewness. The maximum value of n will be located in the velocity bin with the

most probable velocity. If Cmp matches the location of the maximum n value, then

the histogram programs are working correctly. A distribution with high kurtosis will

be tall, thin, and pointed at the peak, while a low kurtosis distribution will be short,

and broad. Sample kurtosis is calculated by [20]:

x4 =
1
n

∑n
i=1(xi − x)4

( 1
n

∑n
i=1(xi − x)2)2

(3.6)

Skewness is the measure of symmetry around the mean. A distribution with no

skewness will be perfectly symmetric about the mean. A distribution with negative

skewness is asymmetric, favoring the left of the mean and a distribution with a positive

skewness favors the right side of the mean. Skewness of a sample distribution can be

calculated by [20]:

x3 =
1
n

∑n
i=1(xi − x)3

( 1
n

∑n
i=1(xi − x)2)

3
2

(3.7)

3.6 Hard Sphere Comparison

In order to verify if the SAR method can be used as a Mach dependent param-

eter, rather than VHS, that can be varied to produce a more accurate result, it is
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necessary to use the HS model with SAR and compare to Bird’s original code for a

given Mach number. The DSMC1S and DSMC2A codes were both altered for HS.

The collision cross-section of the particle is calculated using [4]:

�T = �d2 (3.8)

The diameter is constant, unlike the diameter in Equation 2.19. The results of the

hard sphere model cases will be compared both to Bird’s original code with VHS

and SAR and NoAR codes with VHS. For DSMC2A, HS will be compared using the

density plots from Davis. The DSMC1S, HS codes will be evaluated using line plots

and inverse shock thickness calculations.
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IV. Results

4.1 Random Walk Testing

The random walk testing results include variance and average kinetic energy. If

the average kinetic energy stays relatively constant, there are no random walks in the

system and the algorithms are conserving energy.

Figure 4.1: Variance for Random Walk Test

As can be seen in Figure 4.1, the variance for all three cases are on the same

order of magnitude. The average kinetic energy stays constant at about 0.0004 while

the variance is between −6∗10−12 and 6∗10−12. The small amount of variance is most

likely caused by rounding errors due to the computations performed by the computer,

rather than problems with the codes.
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4.2 1-Dimensional Shock Experimental Comparisons

4.2.1 Inverse Shock Thickness. A few small changes were made in the

sampling subroutine of DSMC1S from previous research, so the first part of the inves-

tigation was to verify that the inverse shock thickness plot is still showing the same

behavior as was noted before.

Just as with Figure 3.2, the black line in Figure 4.2 is Alsmeyer’s curve fit, and

the blue line is the 6th order curve fit for all the experimental data. The crosses all

represent simulation results, with the red being DSMC, blue is SAR 00%, pink is SAR

25%, yellow is SAR 50%, cyan is SAR 75%, green is SAR 100%, and black is NoAR.

Through Mach 3, Bird’s code matches well with the blue curve fit, but at Mach 4,

Bird begins to over predict the shock thickness. Bird’s symbol cannot always be seen

on the figure because the SAR 00% data is colocated.

An effort was then made to curve fit the � input values that would provide the

correct inverse shock thickness for each given Mach number, and the resulting plot

can be seen in Figure 4.3. The initial value of � at each Mach number was found by

interpolating the � values using Figure 4.2. These values were then used as an input in

a SAR simulation, and the output was used to calculate the inverse shock thickness.

The resulting inverse shock thickness was then evaluated, and a new � value was

chosen if the inverse shock thickness did not match the blue curve fit. The process

was repeated until the inverse shock thickness for each Mach number all matched the

blue curve fit line in Figure 4.2. Figure 4.3 is the result of the � fitting process just

described.
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The cyan crosses in Figure 4.3 are the calculated results. The Mach number

and their associated � values are displayed in the Table 4.1. The additional Mach

numbers were added in areas where the change in � versus Mach number were large

in order to get a good understanding of the behavior in high gradient portions of the

curve. Table 4.1 shows the values plotted in Figure 4.3.

Table 4.1: � Values Fit to Mach Number

Mach � (%)
1.5 0
2 0

2.5 .5
3 5

3.5 10
4 15

4.5 18
5 22
6 27
7 28
8 30

8.25 30.5
8.5 33
8.75 34

9 45

Since Bird’s results fit through Mach 3, the first two points in the curve fit are

zero, which will negatively affect the curve fit. Two curve fits were therefore created,

one that includes the first 5 points, and one that does not. The two curves in Figure

4.4 allow one to tell which curve fit will work best.

The orange line in Figure 4.4 represents the curve fit over the entire data set,

the green line represents the curve fit of data above Mach 4, and the blue crosses are

the points used to calculate the curve fits. One can see that the curve fit for the whole

data set does not match the points between Mach 8 and Mach 9, but the curve fit

for just the higher Mach data does match. Note the significant increase in � required

to maintain the correct inverse shock thickness at higher Mach numbers. In order
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Figure 4.4: Inverse Shock Thickness vs Mach Number Curve Fit

to better understand the relationship between the algorithms and Mach number in

producing the correct inverse shock thickness, a graph was created that shows the

percent difference between the experimental inverse shock thickness and the inverse

shock thickness calculated by the algorithms. The experimental values used for the

graph came from the blue curve fit of all the experimental data on Figure 4.2.

In Figure 4.5, Bird’s and � = 0%’s results match the experimental data at

Mach 1.5, but then underpredict the shock thickness at Mach 2. After Mach 2, the

two algorithms consistently predict a thicker shock compared to experimental data.

� = 25% underpredicts the inverse shock thickness through Mach 5, but at Mach

6, is very close to the experimental data, which matches Figure 4.4. The higher �

values and NoAR predict a thinner shock at every Mach number in Figure 4.5. The

overall behavior of Figure 4.5 matches Figure 4.4. The percent differences steadily

rise until Mach 6 in Figure 4.5, and flattens out until Mach 8, at which point the

percent difference increases drastically. The curve fit in Figure 4.4 increases also until

Mach 6, becomes relatively flat until Mach 8, then spikes at Mach 9. One would
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Figure 4.5: Inverse Shock Thickness Percent Difference vs Mach Number

expect that these two graphs would match, since both of these graphs are different

ways to show the relationship between Bird, SAR with different � input values, and

NoAR to an inverse shock thickness associated with Mach numbers. The relationship

should be extended to higher Mach number data set to best confirm the relationship

or modify it as needed for higher Mach numbers.

Now that it has been established that there is a Mach dependency, it is necessary

to find out what causes the dependency. The first thing to look at is the collision

ratio, which is the ratio of pairs of particles accepted (fully and partially) over the

total number of pairs selected as possible collision partners.

In Figure 4.6, the blue diamond is � = 100%, the red square is � = 75%, the

green triangle is � = 50%, the purple x is � = 25%, the blue start is � = 0%, and

the orange circle is Bird. NoAR by definition always has a collisions ratio of 1. Bird

has the smallest collision ratio, which is expected since it has a binary accept/reject

criteria. � = 0% provides the same values for the collision ratio as Bird. As � increases,

so does the collision ratio. The � value will increase the number of partially accepted

collisions, which increases the overall collision ratio. As Mach number increases, the
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Figure 4.6: Collision Ratio vs Mach Number

collision ratio decreases, and begins to reach an asymptotic limit. This limit is due

to the change of the velocity distribution with velocity.

Figure 4.7: Change in Velocity Distribution with Mach Number

In Figure 4.7, the black line is Mach 1.5, the magenta line is Mach 3, the red

line is Mach 6, the blue line is Mach 9, and the cyan line is Mach 12. The dotted black

and cyan lines represent the upper limit of the SAR criteria, and the dashed line is

the lower limit of the SAR criteria all for an � = 25% input value. One can see how

at lower velocities the distribution is tall and thin, but as the velocity increases the

distribution becomes shorter and wider. The change between Mach 1.5 and Mach 3
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is drastic, but as the velocities become larger, the change in the distribution becomes

smaller. These smaller changes result in smaller differences in collision ratio as the

Mach number increases. Additionally, as the velocity increases, the maximum �T cr

value is going to increase, which will decrease the likelihood of a particle pair having

a large ratio in Equation 2.15, which will decrease the number of collisions that are

accepted. This behavior is small though, and does not explain the drastic change

in � as Mach number increases required to match experimental data. The velocity

distributions will allow for further investigation of the behavior of DSMC, SAR, and

NoAR.

4.2.2 Velocity Distribution Comparisons. The velocity distribution compar-

isons provide insight into the differences of the algorithms, especially with how well

the algorithms keep with the assumption of local equilibrium. As previously stated,

local equilibrium within the computational cells can be assumed if the cell size in

on the order or smaller than the mean free path. The cell size for the 1-dimensional

algorithms is one order of magnitude smaller than the mean free path. The Mach 7.18

case can be compared to Holtz and Muntz’s experimental data. These distributions

are taken using the velocity traveling in the x-axis in order to compare appropriately

to the experimental data.

In Figure 4.8, Bird’s result is the tan color with the x symbol, � = 0% is gray

with the line, the � = 50% is the red line with the triangle, � = 100% is the green

dashed line, NoAR is the blue line with the upside down triangle, and Holtz and

Muntz’s data is the blue circle. All of the distributions in Figure 4.8 are unweighted.

The SAR distributions are created by using the modified accept/reject criteria, but

the weightings are neglected, which allows for an understanding of the effect of the

accept/reject portion of the algorithm by itself.
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Figure 4.8: Unweighted Velocity Distributions Upstream of Shock

The distributions in Figure 4.8 are taken upstream of the shock, and at this point

the distributions are thin. These cells are in equilibrium, and all of the distributions

follow Holtz and Muntz’s experimental data similarly well.

Figure 4.9: Weighted Velocity Distributions Upstream of Shock
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Figure 4.9, the distributions are created using the particles weights based on

the SAR methodology. Just as with the previous figure, all of the distributions match

the experimental data well.

Figure 4.10: Unweighted Velocity Distributions at n̂ = 0.24

Figure 4.10 shows the unweighted distributions about a quarter of the way

through the shock structure. Bird and the unweighted SAR distributions severely

underestimate the number of collided particles. There is a large number of particles

at the bulk velocity, and few particles traveling slower than the bulk velocity. The

� = 0% shows more particles traveling slower than the bulk velocity, and as the � value

increases, the number of particles tends towards NoAR. The NoAR distribution has

the lowest number of particles traveling slower than the bulk velocity, indicating that

the number of collided particles is fewer. The changes in accept/reject criteria allow

for a wider range of particles to collide that would have otherwise been unable to,

which causes minor changes in the distribution, as seen in the area of the distribution

to the left of the peak at unity.

Figure 4.11 shows a similar peak as the unweighted distributions, but the por-

tion of the distributions to the left of the peak are very different from the unweighted

cases. The weighted � = 0% distribution matches well to the experimental, but pre-
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Figure 4.11: Weighted Velocity Distributions at n̂ = 0.24

dicts slightly more particles at the lower velocities than the experimental observations.

The � = 50% distribution underpredicts the number of particles traveling less than

the bulk velocity, as do � = 100% and NoAR. As � increases, the number of parti-

cles traveling less than the bulk velocity decreases, which is most likely due to the

weighting. As the band of partially accepted collisions increases, more particles are

given a weighting between zero and one, and these partial weightings will decrease

the number of particles compared to � = 0%.

In Figure 4.12, the velocity distributions are taken at approximately one third

of the way through the shock layer. The experimental plot widens as more particles

have now collided and are traveling at velocities other than the bulk velocity. The

unweighted distributions still show a thin peak at the bulk velocity and underpredicts

the number of particles that are going slower than the bulk velocity. The number of

particles to the left of the peak has increased compared to Figure 4.10, indicating that

more particles have collided as the particles have move farther into the shock layer.
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Figure 4.12: Unweighted Velocity Distributions at n̂ = 0.333

Figure 4.13: Weighted Velocity Distributions at n̂ = 0.333

The weighted distributions in Figure 4.13 again show a much better comparison

to experimental data than the unweighted distributions. All of the distributions

underpredict the number of particles to the left of the peak, but match the peak well.

As seen previously, the � = 0% case underpredicts the least, and NoAR underpredicts

the most.
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Figure 4.14: Unweighted Velocity Distributions at n̂ = 0.542

The unweighted distributions in Figure 4.14 match the experimental data very

well to the left of the peak at one, and the width of the distributions compare well to

the experimental data. Bird and � = 0% have the most pronounced peak at one, and

as � increases, the peak is reduced. NoAR does not show a peak, but the slope does

not quite match the experimental data.

Figure 4.15: Weighted Velocity Distributions at n̂ = 0.542
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Figure 4.15 shows that all of the weighted distributions match very well to the

experimental data. The experimental velocity distribution is very near to the post

shock equilibrium distribution, and as will be seen in the next figure, there is little

change after this point in the shock structure. All of the weighted distributions show

that enough collisions have occured in order to compare favorably to the experimental

data. Even the unweighted distributions shown in Figure 4.14 are fairly close to

matching the experimental distribution.

Figure 4.16: Unweighted Velocity Distributions Downstream of Shock

Downstream of the shock, in Figure 4.16, the flowfield has returned to an equi-

librium state. The unweighted distributions again are very similar to the experimental

data, which confirms the idea that in equilibrium the algorithms produce similar re-

sults because the collision integral is not a factor.

In Figure 4.17, there is very little difference between these distributions, and

they all compare well to the experimental data. Just as with the unweighted distri-

butions downstream of the shock, now that the flow has returned to an equilibrium

state, all of the algorithms produce comparable results.
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Figure 4.17: Weighted Velocity Distributions Downstream of Shock

The results of the experimental comparison show that in equilibrium, the results

of the algorithms are very similar, but in nonequilibrium within the shock layer,

clear differences can be seen. Bird and the unweighted SAR and NoAR distributions

show that the algorithms do not predict the collision rate accurately, which results

in particles maintaining the bulk velocity longer through the shock than is seen in

experiment. The weighted SAR distributions better match the experimental data,

with the lower � = 0% matching best compared to � = 100% and NoAR. NoAR

matches the worst of the weighted distributions through the shock, even though NoAR

has the highest collision rate.

4.3 1-Dimensional Data

4.3.1 Line Plots. Line plots were created using Mach 1.2 and Mach 9 cases

for density, u-velocity, and temperature in order to gain an understanding of how

the SAR algorithm affects the flowfield parameters at the lowest and highest Mach

numbers evaluated in this study. Mach 1.2 was the first case evaluated:

In Figure 4.18, Bird’s result is green, � = 0% is red, � = 25% is blue, � = 50%

is brown, � = 75% is light blue, � = 100% is orange, and NoAR is purple. The color
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Figure 4.18: Density Line Plot for Mach 1.2 Normal Shock

scheme for each case is kept throughout this report for ease of reading. Bird’s results

and � = 00% do not lie on top of each other. However, Bird and NoAR are still the

extrema with the SAR results in between. The same is true for the velocity in Figure

4.19.

Figure 4.19: U-Velocity Line Plot for Mach 1.2 Normal Shock
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Magnifying the figure at the top of the profile, it can be seen that all the results

of � = 75% and higher lie on the NoAR results. Additionally, the NoAR result does

not show as much variance as the other cases.

Figure 4.20: U-Velocity Line Plot for Mach 1.2 Normal Shock Zoomed In

The temperature profile shows that the SAR results seem to be offset by about

18 K compared to Bird and NoAR. The codes both have the same initial temperature

in the data subroutine, so the issue must be one of sampling.

An attempt to offset the temperature difference shown in Figure 4.21 by chang-

ing the input temperature in the data subroutine still does not line up with Bird’s

results. It should be noted that Bird’s results matches the analytical temperature

difference using normal shock relations, while SAR does not.
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Figure 4.21: Temperature Line Plot for Mach 1.2 Normal Shock

Figure 4.22: Temperature Line Plot for Mach 1.2 Normal Shock with Offset

Additionally, the change in input temperature affects other parameters, as seen

in Figure 4.23. The offset value causes the velocity after the shock to be smaller than

it should be. The issue with temperature needs to be looked at further in order to

understand why only that flowfield parameter is affected while velocity without the
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Figure 4.23: U-Velocity Line Plot for Mach 1.2 Normal Shock with Offset

offset seems to produce good results. A considerable amount of time investigating the

temperature issue has not led to any resolution of the problem, and DSMC2A SAR

algorithms do not have this issue.

Line plots have also been produced for Mach 9 in order to understand the effect

of higher velocities on the flowfield properties.

Bird and � = 0% do not match exactly. It was expected that they would match

since they have the same accept/reject criteria and density is not sampled based on

weighting. The Mach 9 results show much less variance than the Mach 1.2 results,

even though they are both computed for 10,000 time steps, which can be seen by the

smooth lines as compared to Mach 1.2.
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Figure 4.24: Density Line Plot for Mach 9 Normal Shock

Figure 4.25: U-Velocity Line Plot for Mach 9 Normal Shock

Bird is not at the extrema, but rather in the middle of the SAR results. The

smooth lines can best be seen in the magnified velocity profile in Figure 4.26.
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Figure 4.26: U-Velocity Line Plot for Mach 9 Normal Shock Zoomed In

Again, the SAR temperature values are offset from Bird and NoAR in Figure

4.27. There does not appear to be a significant offset before the shock, but after the

shock there is a difference of about 500 K.

Figure 4.27: Temperature Line Plot for Mach 9 Normal Shock
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The Mach 9 line plots are very similar to Mach 1.2 plots with the exception of

the smoother lines. Additionally, the change in flowfield properties across the shock

is larger, due to the stronger shock typical of a much higher Mach number. Velocity

distributions will be evaluated next in order to compare the macroscopic properties

to the particle velocities.

4.3.2 Velocity Distributions. There are two sets of velocity distribution

data for the SAR and NoAR algorithms. The first set is all the particles in the cell,

without regard to weighting, which will show how the surface would experience the

flow in the SAR and NoAR algorithms, since weighting is not taken into account for

the reflect module [4]. The weighted and unweighted distributions will also show if

the changes are due more to the change in collision rate due to the SAR method or

if they are due to the weighting scheme. The velocity distributions were sampled at

four different Mach numbers: 1.5, 3, 6, and 9 before the shock, in the shock, and after

the shock. The distributions will be compared each other, and are sampled after the

collision in order to correctly investigate the influence of the accept/reject changes on

the flowfield.

Figure 4.28: Unweighted Velocity Distributions Before Shock Mach 1.5

In Figure 4.28, the unweighted velocity distributions for Bird, � values of 0%,

50% and 100%, and NoAR before the shock was plotted in the same manner as the
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simulation data compared to Holtz and Muntz was plotted. The distributions are all

nearly identical, which shows again that the change in accept/reject criteria is not the

main cause of the flowfield changes, but rather the weighting associated with SAR

created the large differences. All of the simulation results have a peak to the right bulk

velocity. Since these distributions are taken before the shock, one would expect the

peak to be at one. The distributions are wider than the upstream velocity distribution

in Figure 2.11, which is due to the lower velocity of the flow field. The unweighted

� = 0% distribution is identical to Bird’s distribution, as is expected. � = 0% has

the same accept/reject criteria as Bird, therefore the only difference between a SAR

algorithm with � = 0% and DSMC is the weighting. If weighting is neglected, the

flowfields match exactly.

Figure 4.29: Weighted Velocity Distributions Before Shock Mach 1.5

The weighted distributions in Figure 4.29 are jagged compared to the un-

weighted distributions, which due smaller sample size. The peak of the weighted

distributions is in the same location as the unweighted distribution.
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Figure 4.30: Unweighted Velocity Distributions In Shock Mach 1.5

In Figure 4.30 the distributions are very similar to the distributions before the

shock. A shock at Mach 1.5 is fairly weak, and the amount of nonequilibrium is fairly

small. Therefore, the macroscopic flowfield parameters and the velocity distributions

will show smaller changes compared to shocks at higher Mach numbers.

Figure 4.31: Weighted Velocity Distributions In Shock Mach 1.5

In Figure 4.31, the weighted distributions are slightly less jagged than before

the shock, which is due to a larger number density in the shock which increases the
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sample size of the distribution. The peaks for the weighted distributions are in about

the same location as the peaks of the unweighted distributions.

Figure 4.32: Unweighted Velocity Distributions After Shock Mach 1.5

After the shock, in Figure 4.32, the distributions again look very similar to the

distributions before the shock and in the shock. Since the shock is weak, it is expected

that the distributions would not change very much, but it was expected that the peak

of the distribution would be at a location less than one.

Figure 4.33: Weighted Velocity Distributions After Shock Mach 1.5
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The weighted distributions in Figure 4.33 are still fairly jagged. The changes in

the distribution across the shock are very minor, so a larger Mach number will need

to be investigated in order to show how the distributions compare when there is a

larger gradient within the shock, which leads to more of a nonequilibrium condition.

Figure 4.34: Unweighted Velocity Distributions Before Shock Mach 3

As seen in Figure 4.34, at Mach 3, the preshock distributions are thinner than

the Mach 1.5 preshock distributions. The distributions are still centered to the right

of the bulk velocity, but they are not as far off as they were in the Mach 1.5 case. All

of the unweighted distributions are very similar to each other, just as was seen with

the Mach 1.5 figures.
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Figure 4.35: Weighted Velocity Distributions Before Shock Mach 3

The weighted distributions in Figure 4.35 are very jagged compared to the

unweighted distributions. The � = 100% distribution is less jagged than the � = 0%

distribution, and NoAR is the least jagged of the weighted distributions. As � value

increases, so does the sample size, and NoAR has the largest sample size of weighted

distributions and therefore is more smooth.

Figure 4.36: Unweighted Velocity Distributions In Shock Mach 3
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Figure 4.36 shows a wider distribution for all of the cases compared to the

distributions before the shock. Also, the distributions are centered around a value

less than the bulk velocity, as expected.

Figure 4.37: Weighted Velocity Distributions During Shock Mach 3

Just as with Mach 1.5, the weighted distributions in the shock are less jagged

than before the shock due to an increase in density in Figure 4.37. The weighted

NoAR distribution is very smooth, and other than being flatter at the top of the

distribution, very closely resembles the unweighted NoAR distribution.

Figure 4.38: Unweighted Velocity Distributions After Shock Mach 3
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Figure 4.38 shows that after shock the distributions are centered to the left of

the bulk velocity, which indicates that the particles have reequilibrated around a new

bulk velocity that is lower than the upstream bulk velocity. So far, there has been

very little difference between the unweighted distributions at each location, which

indicates that the change in the collision rate does not play as large of a role in the

flow field compared to the weighting.

Figure 4.39: Weighted Velocity Distributions After Shock Mach 3

The weighted distributions in Figure 4.39 after the shock are very similar to

each other, as is expected because this portion of the flowfield is in equilibrium. The

weighted NoAR distribution again is the most smooth of the weighted distributions.

There is very little difference between the weighted distributions in the shock and the

distribution after the shock, except for the fact that the distributions after the shock

are more smooth.
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Figure 4.40: Unweighted Velocity Distributions Before Shock Mach 6

In Figure 4.40, the unweighted distributions are more thin than the lower Mach

numbers already investigated. These distributions, which are at Mach 6, are centered

on the bulk velocity, unlike the lower Mach numbers.

Figure 4.41: Weighted Velocity Distributions Before Shock Mach 6

The weighted NoAR is still the most smooth of the weighted distributions in

Figure 4.41. The weighted � = 0% distribution is jagged at the top. The distributions

are centered on one, as expected.
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Figure 4.42: Unweighted Velocity Distributions In Shock Mach 6

In Figure 4.42 the unweighted distributions have a peak at the bulk velocity,

but the distribution is asymmetric and skewed to the right. Particles have collided

and are moving slower than the bulk velocity, but there are still a significant portion

of particles traveling at the bulk velocity.

Figure 4.43: Weighted Velocity Distributions In Shock Mach 6

The weighted distributions in Figure 4.43 has a peak to the left of the bulk

velocity, which makes sense because the sampling is only from particles that have
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collided. The weighted distributions are more symmetric and look more like the

equilibrium distributions seen outside of the shock layer, which is expected.

Figure 4.44: Unweighted Velocity Distributions After Shock Mach 6

Figure 4.44 shows that after the shock, the unweighted distributions again look

very similar to each other, indicating that in equilibrium the algorithms will simulate

similar flow fields. The peak of the distributions are to the left of one, which shows

that the bulk velocity after the shock is less than the bulk velocity before the shock.

Figure 4.45: Weighted Velocity Distributions After Shock Mach 6
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The weighted distributions in Figure 4.45 are very similar to the unweighted

distributions shown in the previous figure. The weighted distributions are less jagged

than the distributions at lower Mach numbers, which is due to the increased density

after this strong shock.

Figure 4.46: Unweighted Velocity Distributions Before Shock Mach 9

In Figure 4.46, the distributions are all very thin and identical to each other.

The peaks are located at the bulk velocity.

Figure 4.47: Weighted Velocity Distributions Before Shock Mach 9
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The weighted distributions in Figure 4.47 are thin and very similar to the un-

weighted distributions in Figure 4.46. NoAR has the smoothest distribution compared

to the other weighted distributions, but overall they are comparable.

Figure 4.48: Unweighted Velocity Distributions In Shock Mach 9

The bimodal distribution as discussed by Holtz and Muntz [19] is more distin-

guishable at Mach 9 in the unweighted distributions in Figure 4.48. NoAR shows the

least bimodal behavior compared to the other unweighted distributions.

Figure 4.49: Weighted Velocity Distributions In Shock Mach 9
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The distributions in Figure 4.49 are not bimodal because all the particles have

collided and are in equilibrium with each other. The weighted distributions match

each other well and are nearly symmetric around the peak.

Figure 4.50: Unweighted Velocity Distributions After Shock Mach 9

After the shock, in Figure 4.50, the unweighted distributions return to an equi-

librium distribution with a peak at less than the bulk velocity. The distribution after

the shock is much wider than before the shock because the particle collisions within

the shock tend to create a distribution wider than before the particles collided.

Figure 4.51: Weighted Velocity Distributions After Shock Mach 9
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In Figure 4.51, the weighted distributions are smoother than at lower Mach

numbers, but still not as smooth as the unweighted distributions show in the previous

figure. The distributions are very similar to the weighted distributions within the

shock, but the peak is farther to the left after the shock. the nonequilibrium areas

are where the major differences between the algorithms will be observed.

Based on the Holtz and Muntz comparison, and the further inspection of velocity

distributions at four different Mach numbers it appears that Bird’s code does not

allow for enough collision to occur in order to properly equilibrate the cell. In order

to confirm this idea, the Mach 9 simulation using Bird’s code was run again, but

the velocities of collided particles were accounted for separately from the uncollided

particles. The collided and uncollided distributions were graphed both normalized

and not normalized in order to allow the reader to see the overall affect and to be

able to compare the distributions to distributions already shown.
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Figure 4.52: Velocity Profiles for Collided and Uncollided Particles In Shock M=9

As seen previously with the Mach 9 distribution in the shock, there is a definite

peak at the bulk velocity. Looking at just uncollided particles results in a distribution

that is very similar to the distribution one gets when looking at all of the particles,

regardless of weighting. However, the distribution of just the collided particles is

substantially different. The smaller peak is due to particles that have collided in
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previous cells. DSMC re-indexes the particles after each time step because of particles

entering and leaving the flowfield. Therefore it is not currently possible to track

the history of the particles and make a distribution of particles that have collided

previously and a separate distribution of particles that have never collided. The

distribution that has not been normalized shows that the number of collided particles

is much smaller than the number of collided particles. The distribution is incredibly

short compared to the uncollided distribution, but nearly as wide. The normalized

distribution again shows the bimodal distribution for the uncollided particles, but the

collided particles look very similar to the � = 0% weighted distribution which has

been overlayed on the plot. Next, the statistical properties of the distributions looked

at so far should be investigated for a better comparison.

The column on the left in Table 4.2 is the unweighted values, and the column on

the right is the weighted values with the values grouped by algorithm and location.

Kurtosis and skewness are calculated using equations 3.6 and 3.7. Cmp is the velocity

that corresponds to the peak of the distribution, which loses some meaning with the

bimodal distributions, so the average velocity is also calculated. The input velocity

for Mach 1.5 is 478 m/s, and the analytically calculated value for the velocity after

the shock is 278 m/s. As noticed with the distributions, the Cmp values for all the

Mach 1.5 distributions are higher than the input velocity. The average velocities are a

little higher than the most probable velocities, which implies that the distributions are

skewed to the right. The skewness values are positive, which also indicates that the

distributions are skewed to the right. The kurtosis values only vary slightly through

the shock as would be expected given the minor changes observed when visually

comparing the distributions. The shock is weak at Mach 1.5, therefore the flowfield

does not change significantly through the shock.
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Table 4.2: Distribution Properties M=1.5

(a) Unweighted (b) Weighted

At Mach 3, The input bulk velocity is 956 m/s, which matches best with the

Cmp for the weighted � = 75%. The unweighted Cmp values are all above the input

velocity, as are the average velocity values. � = 0% and 75% have Cmp values below

the input velocity, but the rest of the weighted values are above the input velocity.

Kurtosis values are above the kurtosis values at Mach 1.5, which is expected because

the distributions become thinner as Mach number increases. The skewness values

before the shock are higher than Mach 1.5 skewness values, indicating that there are
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Table 4.3: Distribution Properties M=3

(a) Unweighted (b) Weighted

more particles traveling faster than Cmp at Mach 3 than Mach 1.5. The skewness of

the distribution in the shock decreases compared to before the shock, and increases

again after the shock.

In Table 4.4, the kurtosis is higher than the lower Mach numbers, as is expected.

The skewness for all the results is very high before the shock, and within the shock

drops to about half the before shock value. The unweighted distributions are begin-

ning to exhibit more of a bimodal distribution within the shock, with the majority of
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Table 4.4: Distribution Properties M=6

(a) Unweighted (b) Weighted

particles at the bulk velocity, which results in a slightly higher skewness compared to

the weighted distributions. The Cmp values are closer to the bulk velocity compared

to lower Mach numbers with the unweighted � = 75% value being closest to 1913

m/s followed closely by weighted NoAR. The average velocities match closely to the

corresponding Cmp for each case, which is most likely due to the thin distributions at

this Mach number.
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Table 4.5: Distribution Properties M=9

(a) Unweighted (b) Weighted

The before shock values for kurtosis and skewness are much higher compared

to previous Mach numbers and the weighted and corresponding unweighted distribu-

tions have very similar values. Within the shock, skewness is again higher for the

unweighted distributions. The Cmp values before the shock are fairly close to the av-

erage velocities, with the exception of the SAR cases previously discussed. The Cmp

value closest to the input velocity of 2867 m/s is the weighted NoAR value of 2878

m/s. The bimodal distribution seen with the unweighted distributions leads to a lower
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average velocity compared to the most probable velocity. Evaluating these velocity

distributions have allowed for a better understanding of the microscopic behavior of

the particles, and the change of the behavior when using SAR and NoAR. Through

the shock, the number of collisions as calculated in Bird’s code is obviously too low,

which causes a longer equilibration thereby making the shock layer thicker compared

to experimental data.
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4.4 2d Axisymmetric Hollow Cylinder Results

The DSMC2A code was used for a variety of analyses: density plots compared

to Davis’ experimental data, percent difference contour plots, surface plots, contour

plots, and the cell size was reduced to one quarter the original size with results were

compared to Davis’ data. Before viewing the results in comparison to experimental

data, the contour plots should be investigated so that the overall flowfield is under-

stood. Since density is the primary flowfield parameter investigated in this project,

it should be the first one discussed. There are only slight variations in the flowfields

between Bird, SAR, and NoAR, so only Bird, � = 0%, � = 100%, and NoAR will be

shown in this section.

(a) Bird (b) Eps00

(c) Eps100 (d) NoAR

Figure 4.53: Density Contour Plots

The stagnation point is very visible in Figure 4.53 for all the cases, as is the

shock layer. Only very slight variations in the shock layer can be seen when comparing
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the cases. NoAR results in a shock layer closer to the step that appears to be thicker

than Bird’s shock layer. The temperature plots are also very similar to each other in

Figure 4.54.

(a) Bird (b) Eps00

(c) Eps100 (d) NoAR

Figure 4.54: Translational Temperature Contour Plots

An area of hot gas can be seen before the step in Figure 4.54, where the shock

layer and boundary layer are converging. The size and temperature of that area varies

with algorithm. The shock layer above the step can also be seen, with minor changes

for each case. Note that on the horizontal face of the step in Bird’s case, the step does

not seem flat: there are pockets of hot air throughout the length of the step. The

issue on the step is due to low populations of particles in the cells in that area, which

causes statistical errors. The SAR and NoAR cases do not suffer the same problem,

even though they also have few cells behind the shock along the horizontal face of the

step, which will be shown shortly.
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(a) Bird (b) Eps00

(c) Eps100 (d) NoAR

Figure 4.55: U-Velocity Contour Plots

In Figure 4.55a, the same problem along the top of the step can be seen again,

but it is not seen with SAR and NoAR. In order to show the amount of rarefaction in

each cell, these cases were run again and the number of particles per cell was printed

out to a file.

As seen in Figure 4.56, the number of particles is less than 10 on the horizontal

face of the step. In the stagnation region, the number rises to about 40 particles, and

in the shock layer the number of particles increases even more to approximately 60

particles. The flowfield makes choosing a ratio of simulated particles to real particles a

difficult one. If the ratio is too small, the rarefied areas of the flow become even more

rarefied, leading to errors. If the ratio is too large, particles will collide more than

once per time step in stagnation regions and in the shock layer and the assumption of

decoupled particle collisions and motion is no longer valid. SAR and NoAR provide
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(a) Bird (b) Eps00

(c) Eps50 (d) Eps100

(e) NoAR

Figure 4.56: Average Number of Particles Per Cell

good results, even in areas of higher rarefaction, which is an important point to

consider. The sampling algorithm in SAR and NoAR is most likely what causes

the change, since � = 0% results do not have the same problem as Bird’s results even

though their accept/reject criteria are identical. The weighting algorithm in SAR and

NoAR most likely changes the variance significantly in these low populated regions,

and allows for the flowfield properties to be correctly sampled.

86



4.4.1 Comparison to Davis’ Experimental Data. Previous comparison to

experimental data showed that the NoAR and Bird results were usually the extrema

with the SAR values in between with the 0% case closest to Bird and higher � values

tending toward NoAR [11]. The density profile results from the current simulation

shows the same trend.

Figure 4.57: Density Profile at x=.0313m

In Figure 4.57, the profile data is taken .0187m upstream of the step. All the

cases result in a shape that is fairly similar to the experimental data, but SAR with

� = 50% is matches best with the change in density. Throughout the profile Bird and

� = 00% match, which is why Bird’s green line does not appear.
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Figure 4.58: Density Profile at x=.0462m

Again, all the cases provide results that have the same shape, but � = 50% has

the same change in density at y=0.032 m. None of the computational results match

the solution closer to the wall, but NoAR and the high � value of 200% are the closest.

Figure 4.59: Density Profile at x=.0495m
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At the step, the � = 25% value is closest to the density peak at y= 0.033 m,

and NoAR and � = 200% match the best closest to the wall. All the computational

results match the overall behavior of the density profile.

Figure 4.60: Density Profile at x=.0509m

Past the stagnation point in Figure 4.60, the density profile is similar to the

first profile at x=0.0313 m. The change in density is larger, as the shock is stronger

after the step. Again, just after the step � = 25% matches best with the change in

density.
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Figure 4.61: Density Profile at x=0.0561m

The shock is even stronger 6 mm downstream from the step, as shown by the

change in density at x=0.0561 m in Figure 4.61. Farther downstream from the step,

the change in density most closely matches with � = 100%. Below y=0.034 m, Bird

and � = 0% match the best to the experimental plots. None of the plots show good

agreement near the wall, which may be due to the specular boundary condition in

DSMC2A. At a molecular level, the surface of the cylinder will not be completely flat,

which means that a specular boundary condition is not realistic.

In an effort to see why different � values match at different points on the profile,

temperature and velocity plots have been created. These plots can be compared to

the density plots for an overall understanding of the fluid at the sampling locations.
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(a) Velocity (b) Temperature

Figure 4.62: Velocity and Temperature Profiles at x=0.0313m

The shock layer is not very visible in the velocity profile, which matches the

velocity contour plot. The boundary layer is very clear in the velocity profile, however.

The temperature profile shows a slight change in the temperature gradient at 0.029

m, which is the peak of the density profile. The temperature gradient changes again

at approximately y=0.025 m, which is where an inflection point in the density profile

exists.

(a) Velocity (b) Temperature

Figure 4.63: Velocity and Temperature Profiles at x=0.0462m
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The velocity profile at x=0.0462 m has the beginnings of what looks to be an

unfavorable gradient, which occurs before the boundary layer separates from the wall,

or in the case of this experiment, as the flow moves toward a stagnation point. The

temperature profile has an inflection point at y=0.03 m, which matches one of the

inflection points in the density profile.

(a) Velocity (b) Temperature

Figure 4.64: Velocity and Temperature Profiles at x=.0495m

The velocity profile very clearly shows a stagnation region below y=0.028 m.

Again, the inflection point in the temperature profile corresponds to the second in-

flection point in Figure 4.59.
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(a) Velocity (b) Temperature

Figure 4.65: Velocity and Temperature Profiles at x=.0509m

After the step, the velocity profile returns to a normal boundary layer velocity

profile. Interestingly, the temperature profile in Figure 4.65 has an inflection point

that does not match the simulated results, but it does match the experimental inflec-

tion point.

(a) Velocity (b) Temperature

Figure 4.66: Velocity and Temperature Profiles at x=.0561m
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The last velocity profile shows a higher boundary layer, and the temperature

profile has an inflection point that again matches the density profile’s inflection point.

All of the plots show that the computational results match the same behavior

as the experimental profiles. The computational results tend to be approximately

0.003 m higher than the experimental results, which could easily be explained by

uncertainty of the experimental data. Uncertainty of the experimental data and

the conversion of the graphical data from Davis’ thesis to plots is significant, and

therefore the comparison of the experimental data to the simulations is considered

reasonable. However, due to the uncertainty associated with the experimental data, it

it very difficult to definitively say that one algorithm is better than the other. Rather,

the DSMC2A results should be used to show that the SAR and NoAR algorithms

display similar behavior in a 2-dimensional axisymmetric program as they do in the

1-dimensional shock program.

4.4.2 Quarter Cell Size Cases. In Bird’s book, it is suggested that the cell

size be on the order of the mean free path [4]. The cell size for the original case is

approximately 1 mm by 1 mm while the mean free path is 0.47 mm. The cell sized

was reduced to 0.5 mm by 0.5 mm to see if the results compared to Davis can be

further refined.
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Figure 4.67: Density Profile at x=.0313m

The first profile shows that the SAR value that would compare best to the

experimental data is between � values of 25% and 50%, which is slightly lower than

the original results.

Figure 4.68: Density Profile at x=.0462m
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Figure 4.68 compares best with 25% at the peak which is again less than the

original grid. NoAR is closest below the peak.

Figure 4.69: Density Profile at x=.0495m

Figure 4.69 compares best with Bird and 00% at the peak, and below the peak

NoAR compares the best. Note that the exaggerated behavior of the computational

results compared to experimental results still exists.
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Figure 4.70: Density Profile at x=.0509m

Again, Bird and 00% match best with the profile just after the step, while 25%

matches best for the original grid. Below the peak, more of the cases are closer to

experimental data compared to Figure 4.60.

Figure 4.71: Density Profile at x=.0561m
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The last profile, which is taken well downstream of the step, matches closest

with 50% at the peak, and NoAR closer to the wall. The original grid matches closest

with � = 100%.

The smaller grid consistently required a smaller � value to match the results.

Since the ratio of simulated particles to real particles was increased proportionally to

the decreased size of the cells, the collision ratio and variance stayed approximately

the same. This study consists of comparing to experimental data with one Mach

number, which does not allow for further research into the Mach number dependency

for the � input value. The important lesson from this study is that reducing the cell

size to the length of the mean free path does significantly change the � value that

matches experimental data through the shock layer. The addition of more cells and

increase in the ratio of particles caused the computational time to grow significantly.

Each of these cases took approximately 3 days to complete, compared to less than

half a day for the original grid. The smaller grid will provide a more refined solution,

but may not be worth the additional computational time to get the better solution.

4.4.3 Percent Difference Contour Plots. Contour plots of the flowfields

have been shown earlier in this section in order to show the differences between the

results of the cases. It is difficult to see all the differences with these contour plots,

however. The percent difference plots allow for a better understanding of the changes

in the flowfield for SAR and NoAR compared to Bird’s output. The percent difference

contour plots were created for density, temperature, and u-velocity. The contour plots

of percent difference for density for each of the cases is plotted in Figure 4.72.

In Figure 4.72a, all the cells have a value of zero, indicating that the flowfield

exactly matches that of Bird, which make sense since density is not sampled using the

weightings from SAR and they have the same accept/reject criteria. There are large

differences in density in the shock layer, and along the horizonontal face of the step,

where issues with Bird’s results have previously been noted. The differences increase

with higher � values, with NoAR providing the largest differences. The areas of large
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(a) Eps00 (b) Eps50

(c) Eps100 (d) NoAR

Figure 4.72: Percent Difference Density Contour Plots Compared to Bird

differences along the horizontal face of the step is due to an issue with DSMC. The

number of particles in the area behind the shock along the step is very small, which

results in a large amount of variance and causes problems with the correct simulation

at that location. Temperature is investigated next.

The largest temperature differences in Figure 4.73 are found at the leading edge

of the hollow cylinder where the shock layer begins and throughout the shock layer.

As the � value increases, so do the differences between Bird and the SAR case. NoAR

shows the greatest difference compared to Bird. The SAR results show negative

differences, especially near the leading edge of the cylinder, while the NoAR results

does now show any negative differences. The red rectangle is the step that is attached

to the hollow cylinder. Note there is not a large difference in the boundary layer,

even though it is a region of nonequilibrium. The amount of nonequilibrium in the

boundary layer is much smaller than the amount found in the shock associated with

this flowfield.
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(a) Eps00 (b) Eps50

(c) Eps100 (d) NoAR

Figure 4.73: Percent Difference Temperature Contour Plots Compared to Bird

Most of the flowfield matches Bird’s results well for u-velocity, and the largest

differences are found at the stagnation point. Figure 4.75 focuses on the stagnation

region in order to better view the differences in that area.

Interestingly, NoAR shows the least amount of difference compared to Bird in

the stagnation region in Figure 4.75. The SAR values all show very similar differences,

but � = 0% shows the most difference and � = 100% shows the least of the SAR cases.

The two changes made to the code involve the accept/reject criteria, which affects

the collision rate, and the flowfield sampling. Flowfield sampling does not affect the

surface values, so the percent difference for surface properties should also be looked

at to evaluate the changes to the system due to the accept/reject criteria alone.

As would be expected, in Figure 4.76, the � = 0% case shows no difference

from Bird’s results. The only difference between Bird and � = 0% is the sampling,

but since sampling doesn’t affect the surface values, they have the same results. Both
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(a) Eps00 (b) Eps50

(c) Eps100 (d) NoAR

Figure 4.74: Percent Difference U-Velocity Contour Plots Compared to Bird

plots show that NoAR is the most different from Bird and the SAR results are between

Bird and NoAR. The vertical face shows a maximum difference of about 16% and the

horizontal face shows a maximum difference of 18%. The differences on the surface

are much smaller than the difference in the temperature flowfield values, which range

from -160% to 80%, which proves that sampling has a more more profound effect on

the results of the simulation than SAR does.

4.4.4 Surface Plots. Surface plots for incident pressure, incident transla-

tional temperature, and heat flux have also been graphed for both the horizontal and

vertical faces of the step. These plots can be used to help understand the effect of

the SAR and NoAR algorithms on the surfaces.
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(a) Eps00 (b) Eps50

(c) Eps100 (d) NoAR

Figure 4.75: Percent Difference U-Velocity Contour Plots Compared to Bird

The vertical face of the step causes a stagnation point where it meets the edge

of the hollow cylinder. Heat flux is a function of the temperature gradient, so it makes

sense that the heat flux in Figure 4.77c follows the profile of the incident temperature

in Figure 4.77b.
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(a) Vertical Step Surface (b) Horizontal Step Surface

Figure 4.76: Surface Percent Difference Plots

The horizontal surface shows a slight increase in incident pressure just after

the step, followed by a steady decrease until x=0.08m when there is a sudden spike

followed by drop in pressure. The same behavior can be seen in all of the profiles in

Figure 4.78.

4.4.5 Velocity Distributions. Now that the macroscopic properties have

been discussed, the velocity distributions for Mach numbers 1, 3, 6, and 9 will be

shown. The DSMC2A cases cannot be compared to a theoretical distribution like

the 1d cases. The 2-dimensional axisymmetric flowfield is much more complicated,

with a shock layer, a circulation region, a stagnation region, and a boundary layer.

These flowfield effects are associated with a change in bulk velocity, and there is not

a way to calculate what the bulk velocity should be in each of these cells. Therefore,

the SAR and NoAR speed distributions will be compared to Bird only, without the

theoretical distribution at each of the sampled cells. The sample cells are located in

the stagnation region, boundary layer, shock layer, and behind the shock.

As with the 1-dimensional results, the unweighted distributions are on the left

and the weighted are on the right for all of the figures. Bird’s distribution is plotted
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(a) Pressure

(b) Temperature (c) Heat Flux

Figure 4.77: Surface Plot for Front Face of Step

in the background of all of the plots for comparison. In Figures 4.79 and 4.80, the

distributions were taken at the stagnation region. The stagnation region show particle

velocities that are slower than the bulk velocity, which is 2000 m/s, so the distribution

is to the left of the bulk velocity. The unweighted � = 0% distribution is nearly

identical to Bird, which is expected since they have the same accept/reject criteria.

The weighted � = 0% distribution shows only slight differences compared to Bird, as

do the weighted and unweighted � = 50% distributions.
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(a) Pressure

(b) Temperature (c) Heat Flux

Figure 4.78: Surface Plot for Horizontal Face of Step

In Figure 4.80, the � = 100% distributions are again very similar to Bird, and

the NoAR distributions are the most different from Bird, as would be expected.
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Figure 4.79: Velocity Distributions for DSMC2A Case in Stagnation Region

Figure 4.81 shows a slightly wider distribution than was seen in the stagnation

region, and the weighted � = 0% and both of the � = 50% cases are fairly similar

to Bird. All of the distributions are more jagged than what was observed with the

1-dimensional cases, indicating that the number of particles are fewer in this sample

cell. The peaks of the distributions before the step appear to be farther to the right

compared to the distributions at the stagnation point, which means that the particles
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Figure 4.80: Velocity Distributions for DSMC2A Case in Stagnation Region

are traveling faster as one would expect. Observing Figures 3.4 and 3.5, this sample

location is within the area where the boundary layer and shock layer merge, so one

would expect the particle velocities to be slower and for the distribution to be fairly

wide.

The differences between the � = 100% and NoAR distributions and Bird’s dis-

tribution are more noticeable at this sample location. The tops of these distributions
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Figure 4.81: Velocity Distributions for DSMC2A Case Before Step

are wide, and there is no clear point along the x-axis to name as Cmp. This sampling

cell would have many particles at varying speeds due to the shock layer and boundary

layer merging.

The sampling location for Figure 4.83 is similar to the the previous location.

The sampling cells are at the same x location, but cell 795 is 2 mm higher than cell

495. At this height, the cell is not at the merging location of the boundary layer and
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Figure 4.82: Velocity Distributions for DSMC2A Case Before Step

shock layer, but it is still in the shock layer, which means the particles are moving

slower than the bulk velocity. The distributions at this point are much wider than

have been observed at the previous sampling locations. Additionally, the difference

between the weighted � = 50% distribution and Bird’s distribution is greater than

previously seen.
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Figure 4.83: Velocity Distributions for DSMC2A Case at Leading Edge of Step

In Figure 4.84, the weighted and unweighted � = 100% and NoAR distributions

are similar to Bird’s distribution. The NoAR distributions show slightly fewer par-

ticles traveling at or above the bulk velocity than Bird. Recalling the 1-dimensional

distributions, it should not be a surprise that DSMC2A would predict more particles

traveling at the bulk velocity compared to NoAR.
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Figure 4.84: Velocity Distributions for DSMC2A Case at Leading Edge of Step

Just after the step in Figure 4.85, all of the distributions are very similar to

Bird, which may indicate that at this sampling location the particles are near the

after shock equilibrium state.

Interestingly, the distribution in Figure 4.86 that shows the greatest change

from Bird is the unweighted � = 100% case.
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Figure 4.85: Velocity Distributions for DSMC2A Case 1mm After the Step

Farther downstream of the step, at sample cell 1755, the particles distributions

are fairly similar. None of the distributions are very smooth, which indicates a small

sample size. Figure 4.56 shows that the number density behind the shock along the top

of the step is low, which causes the jagged distributions and causes the inconsistencies

noted in the contour plots with Bird’s simulations.
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Figure 4.86: Velocity Distributions for DSMC2A Case 1mm After the Step

The weighted � = 100% case shows the greatest difference compared to Bird at

the current sample location.
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Figure 4.87: Velocity Distributions for DSMC2A Case Downstream of the Step

The location of the shock layer differed amongst the simulations, as was seen in

the contour plots. Bird and � = 0% have a shock layer than is farther from the body

and thicker than the other simulations. Therefore, Bird and � = 0% distributions are

very thin with a few particles in the wings. The unweighted � = 50% distribution is

thin as well, but does not have as many particles in the wings, indicating that the

sample cell in the � = 50% is farther from the shock layer compared to Bird. The
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Figure 4.88: Velocity Distributions for DSMC2A Case Downstream of the Step

weighted � = 50% has about the same number of particles in the wings because these

particles that are not at the bulk velocity have collided, hence the different velocities.

The � = 100% and NoAR distributions again show more particles near the bulk

velocity, indicating that the sample cell is not in the shock layer.
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Figure 4.89: Velocity Distributions for DSMC2A Case in Shock Layer
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Figure 4.90: Velocity Distributions for DSMC2A Case in Shock Layer
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Table 4.6: Distribution Properties For DSMC2A Simulations

(a) Unweighted (b) Weighted118



In Figure 4.6, Bird and the unweighted � = 0% values are exactly the same, as

expected since the distributions are colocated. The Cmp value is the lowest at sample

cell 350 for all of the weighted and unweighted simulations, which makes sense since

the cell is in the stagnation region. The largest Cmp value is at sample cell 3669, which

is in the free stream for some simulations, but in the beginning of the shock later for

Bird and � = 0%. Kurtosis is highest for sample cell 3669, as expected since it has

the thinnest distribution compared to the other cells. The lowest amount of kurtosis

is located in cell 795, which was noted to have a wide distribution. Cells 795 and

1755 have low skewness values, indicating that the distributions are more symmetric

compared to distributions from other cells. In general, the weighted distributions

have lower skewness values compared to the unweighted distributions, just as was

seen with the normal shock simulations.

4.5 Hard Sphere Comparisons

The last piece of this investigation is determining what results the SAR and

NoAR algorithms give when using the HS model. Given the Mach dependency as-

sociated with both models, the question has been asked if the SAR algorithm could

replace the VHS model, or if it is best used to augment it. The HS model was im-

plemented for both the DSMC1S and DSMC2A codes, and the results have been

compared to VHS results and experimental data.

4.5.1 1-Dimensional Shock. The HS results were compared to the VHS

results through looking at line plots and also comparing the inverse shock thickness

calculations.

The dashed lines are the HS results and the solid lines are the VHS results. The

shock is much thinner for the HS model than the VHS model.

The offset temperatures can be see again, but the HS results are farther off than

the VHS results.
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Figure 4.91: Normal Shock Density Line Plot

Figure 4.92: Normal Shock Temperature Line Plot

The magnified figure better shows how the HS results for Bird and NoAR provide

a consistent temperature as the VHS results, but the SAR VHS and HS results do

not match.

Again, Figure 4.94 shows that the HS model has a much thinner shock, but the

values before and after the shock match.
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Figure 4.93: Normal Shock Temperature Line Plot Magnifiied

Figure 4.94: Normal Shock U-Velocity Line Plot

The shock in Figure 4.95, the inverse shock thickness is clearly not consistent

with experimental data, and SAR and NoAR results are actually worse than Bird’s

result.
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Figure 4.95: Inverse Shock Thickness for HS Model at Mach 9

4.5.2 2-Dimensional Axisymmetric Cylinder. The HS results provide similar

comparisons to the Davis experimental data, but HS tends to exaggerate the change

in density, which results in a long, pointed profile.

Figure 4.96: HS Density Profile at x=.0313m
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In Figure 4.96 Bird and � = 0% match closest to the experimental data, which

differs from the VHS case by 50%.

Figure 4.97: HS Density Profile at x=.0462m

In Figure 4.97, � = 25% is the closest to experimental data, compared to 50%

for the VHS results.

Figure 4.98: HS Density Profile at x=.0495m

123



Bird and � = 0% are most comparable to the experimental data until y=0.029

m. Afterwards NoAR matches most closely. HS and VHS results are very similar at

the step.

Figure 4.99: HS Density Profile at x=.0509m

Again, the HS model results in a very pointed profile, and Bird and � = 0%

match the closest to Davis’ data. The profile farthest downstream is also extremely

Figure 4.100: HS Density Profile at x=.0561m
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pointed and � = 25% matches most closely. The HS model consistently overpre-

dicts the density gradient at the edge of the boundary layer compared to the VHS

models, but actually underpredicts the density closer to the wall. The normal shock

simulations also showed that the HS model overpredicts the density gradient.
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V. Conclusions

5.1 Experimental Comparison

The current project has compared the new SAR and NoAR algorithms to three

sets of experimental data: Alsmeyer’s inverse shock thickness, velocity distribution

by Holtz and Muntz, and Davis’ 2-dimensional axisymmetric hollow cylinder. The

Alsmeyer and Davis comparisons are based on the macroscopic density for the system,

and certain SAR values do match the experimental data better than Bird. The inverse

shock thickness plots show that as Mach number increases, the � value must also

increase in order to match the experimental data. An empirically derived curve fit was

used to relate Mach number to �. The comparison to Davis’ data also demonstrates

that SAR can be used to change DSMC2A results to best match the experimental

data. Due to the complicated flowfield and the fact that the experiment occured at

only one Mach number, a value of � cannot be clearly labeled as the appropriate value

for the simulation, and a Mach relationship cannot be identified. The main point

made from the inverse shock thickness and hollow cylinder comparisons is that the

user defined � input allows for control over the flowfield in order to best match the

experimental data. The potential exists after further research for SAR to be used as

method of producing more accurate results for a multitude of DSMC simulations.

The velocity distributions allow for a deeper investigation into the effect of

SAR and NoAR on the flowfield. Holtz and Muntz performed an experiment at Mach

7.18 to find the velocity distributions of the particles through a normal shock layer.

Comparing these results to Bird, SAR, and NoAR shows that in equilibrium, the

distributions are very nearly the same. The idea that in equilibrium the algorithms

produce similar results is confirmed when looking at the macroscopic results. For the

1-dimensional normal shock, the line plots show that before and after the shock the

values are the same, and only through the shock do the flowfield properties change

with the exception of temperature. There is a problem with the way temperature is

sampled which results in a higher value compared to Bird for SAR, but not NoAR.

The DSMC2A code samples temperature the same way, but does not suffer from
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the same problem. Further research into this matter is required. For DSMC2A,

the percent difference plots show very little difference in flowfield parameters in the

freestream. The differences were noticed in the shock layer, boundary layer, and

stagnation region. These are areas where the gradients, and thus nonequilibrium

are high. Velocity distributions were taken at three locations within the shock and

compared to Holtz and Muntz. The plots definitively show that the SAR algorithm

agrees with the experimental velocity distributions the best. The SAR algorithm

differs from Bird’s code in two respects: the collision rate, and flowfield sampling.

The change in collision rate does alter the flowfield, but not significantly. The real

change is due to the flowfield sampling. SAR and NoAR only sample particles that

have collided during the current time step. The partial weighting associated with

SAR allows particles to collide that normally would be rejected. While these partial

collisions are weighted less than one, their inclusion changes the velocity profiles and

allows for more accurate results. Bird’s resulting velocity profiles show a significant

number of particles at the bulk velocity deep in the shock layer, which according

to the experimental data is not reasonable. The collision rate does not allow for

local equilibration, which is a key assumption of DSMC, and the reason the velocity

distributions show a spike at the bulk velocity within the shock. NoAR tended to

produce velocity distributions that underestimate the number of particles traveling

slower than the bulk velocity within the shock layer, as did � = 100%.

5.2 Further Results

There is also important information to be gleaned from the other data not

compared to experimental data. Velocity distributions were created for Mach numbers

1, 3, 6, and 9. The lower Mach numbers of 1 and 3 show that the DSMC simulation

is able to maintain the local equilibrium distribution within the cell. The gradient

within the shock is shallow enough that DSMC is accurate, which is why through

Mach 3, the inverse shock thickness values are accurate. At Mach numbers 6 and 9,

the velocity distributions within the shock are bimodal, indicating that the particles
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are not in equilibrium with each other. The failure to maintain local equilibrium

causes the simulation to take longer to equilibrate through the shock, which results

in a thicker shock compared to experimental data. One situation that can cause a

simulation to not maintain local equilibrium is a cell that is larger than the mean free

path. In a shock layer, the density increases, which would in turn decrease the mean

free path. The mean free path in the freestream is an order of magnitude larger than

the cell size, but to rule out the possibility, a simulation with the cell size reduced by

half was run. The resulting velocity distribution in the shock showed little appreciable

difference from the original velocity distribution.

Running the DSMC2A code with a grid that was a quarter the size of the original

grid resulted in requiring a smaller � value to match results. The smaller grid allowed

for the particles to maintain local equilibrium better, which means a smaller � value

can be used, just as a smaller � value can match the inverse shock thickness for lower

Mach numbers. The required � input value is proportional to Mach number because

the higher Mach numbers create more nonequilibrium within the shock layer, which

needs to be overcome by a larger � to allow for proper equilibration.

The VHS algorithm is already known to produce better results, and Figure 4.95

shows that even with SAR, the HS results do not compare well to experimental data.

The HS density plots in Figures 4.96 through 4.100 show an exaggerated change in

density compared to the VHS density profiles, and in general the SAR and NoAR

results are actually farther from experimental data. Therefore, the HS model cannot

be used in conjunction with SAR to produce accurate results.

5.3 Future Work

For SAR to be used in simulations a few things need to first occur: SAR needs

to be compared to more complex simulations and geometry, and SAR needs to be

compared to experiments having higher Mach numbers than the Alsmeyer data con-

tains. In order for SAR to be used on cases with more complexity, SAR will need to

be applied to a DSMC code that allows for geometries such as a blunt body, which has

128



been used in experiments. Bird has not made his more recent source codes available

to the public, so a DSMC code would need to be developed specifically with the SAR

modifications, or another open source DSMC code could be used for modification.

The results of the SAR simulations can be compared to experimental data. Addition-

ally, in order to understand the Mach dependency, further experimental comparisons

that vary Mach number throughout the hypersonic regime will need to be completed.

Additionally, the DSMC2A code was compared to experimental data at one Mach

number, data that varies Mach number should be used to best compare DSMC to

SAR and NoAR implemented into a 2-dimensional algorithm.
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